data mining for performance of vegetative filter strips



Mourad Elloumi Biological Knowledge Discovery Handbook. Preprocessing, Mining and Postprocessing of Biological Data Mourad Elloumi Biological Knowledge Discovery Handbook. Preprocessing, Mining and Postprocessing of Biological Data Новинка

Mourad Elloumi Biological Knowledge Discovery Handbook. Preprocessing, Mining and Postprocessing of Biological Data

14213.1 руб. или Купить в рассрочку!
The first comprehensive overview of preprocessing, mining, and postprocessing of biological data Molecular biology is undergoing exponential growth in both the volume and complexity of biological data—and knowledge discovery offers the capacity to automate complex search and data analysis tasks. This book presents a vast overview of the most recent developments on techniques and approaches in the field of biological knowledge discovery and data mining (KDD)—providing in-depth fundamental and technical field information on the most important topics encountered. Written by top experts, Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data covers the three main phases of knowledge discovery (data preprocessing, data processing—also known as data mining—and data postprocessing) and analyzes both verification systems and discovery systems. BIOLOGICAL DATA PREPROCESSING Part A: Biological Data Management Part B: Biological Data Modeling Part C: Biological Feature Extraction Part D Biological Feature Selection BIOLOGICAL DATA MINING Part E: Regression Analysis of Biological Data Part F Biological Data Clustering Part G: Biological Data Classification Part H: Association Rules Learning from Biological Data Part I: Text Mining and Application to Biological Data Part J: High-Performance Computing for Biological Data Mining Combining sound theory with practical applications in molecular biology, Biological Knowledge Discovery Handbook is ideal for courses in bioinformatics and biological KDD as well as for practitioners and professional researchers in computer science, life science, and mathematics.
Giudici Paolo Applied Data Mining for Business and Industry Giudici Paolo Applied Data Mining for Business and Industry Новинка

Giudici Paolo Applied Data Mining for Business and Industry

14358.83 руб. или Купить в рассрочку!
The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications. Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods. Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining. Features detailed case studies based on applied projects within industry. Incorporates discussion of data mining software, with case studies analysed using R. Is accessible to anyone with a basic knowledge of statistics or data analysis. Includes an extensive bibliography and pointers to further reading within the text. Applied Data Mining for Business and Industry, 2nd edition is aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies will provide guidance to professionals working in industry on projects involving large volumes of data, such as customer relationship management, web design, risk management, marketing, economics and finance.
Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management Новинка

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management

3880.76 руб. или Купить в рассрочку!
Packed with more than forty percent new and updated material, this edition shows business managers, marketing analysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problems Each chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer support The authors build on their reputation for concise, clear, and practical explanations of complex concepts, making this book the perfect introduction to data mining More advanced chapters cover such topics as how to prepare data for analysis and how to create the necessary infrastructure for data mining Covers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, clustering, and survival analysis
Tsiptsis Konstantinos K. Data Mining Techniques in CRM. Inside Customer Segmentation Tsiptsis Konstantinos K. Data Mining Techniques in CRM. Inside Customer Segmentation Новинка

Tsiptsis Konstantinos K. Data Mining Techniques in CRM. Inside Customer Segmentation

7602.42 руб. или Купить в рассрочку!
This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.
Antonios Chorianopoulos Effective CRM using Predictive Analytics Antonios Chorianopoulos Effective CRM using Predictive Analytics Новинка

Antonios Chorianopoulos Effective CRM using Predictive Analytics

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.
Pawel Cichosz Data Mining Algorithms. Explained Using R Pawel Cichosz Data Mining Algorithms. Explained Using R Новинка

Pawel Cichosz Data Mining Algorithms. Explained Using R

6080.41 руб. или Купить в рассрочку!
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Meta Brown S. Data Mining For Dummies Meta Brown S. Data Mining For Dummies Новинка

Meta Brown S. Data Mining For Dummies

2263.13 руб. или Купить в рассрочку!
Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining Новинка

Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining

7214.34 руб. или Купить в рассрочку!
The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book
Jared Dean Big Data, Data Mining, and Machine Learning. Value Creation for Business Leaders and Practitioners Jared Dean Big Data, Data Mining, and Machine Learning. Value Creation for Business Leaders and Practitioners Новинка

Jared Dean Big Data, Data Mining, and Machine Learning. Value Creation for Business Leaders and Practitioners

3880.76 руб. или Купить в рассрочку!
With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.
Ekins Sean Pharmaceutical Data Mining. Approaches and Applications for Drug Discovery Ekins Sean Pharmaceutical Data Mining. Approaches and Applications for Drug Discovery Новинка

Ekins Sean Pharmaceutical Data Mining. Approaches and Applications for Drug Discovery

12418.44 руб. или Купить в рассрочку!
Leading experts illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery—including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover: A general overview of the discipline, from its foundations to contemporary industrial applications Chemoinformatics-based applications Bioinformatics-based applications Data mining methods in clinical development Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.
Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management Новинка

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management

3233.97 руб. или Купить в рассрочку!
The leading introductory book on data mining, fully updated and revised! When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.
Russell Anderson K. Visual Data Mining. The VisMiner Approach Russell Anderson K. Visual Data Mining. The VisMiner Approach Новинка

Russell Anderson K. Visual Data Mining. The VisMiner Approach

6519.68 руб. или Купить в рассрочку!
A visual approach to data mining. Data mining has been defined as the search for useful and previously unknown patterns in large datasets, yet when faced with the task of mining a large dataset, it is not always obvious where to start and how to proceed. This book introduces a visual methodology for data mining demonstrating the application of methodology along with a sequence of exercises using VisMiner. VisMiner has been developed by the author and provides a powerful visual data mining tool enabling the reader to see the data that they are working on and to visually evaluate the models created from the data. Key features: Presents visual support for all phases of data mining including dataset preparation. Provides a comprehensive set of non-trivial datasets and problems with accompanying software. Features 3-D visualizations of multi-dimensional datasets. Gives support for spatial data analysis with GIS like features. Describes data mining algorithms with guidance on when and how to use. Accompanied by VisMiner, a visual software tool for data mining, developed specifically to bridge the gap between theory and practice. Visual Data Mining: The VisMiner Approach is designed as a hands-on work book to introduce the methodologies to students in data mining, advanced statistics, and business intelligence courses. This book provides a set of tutorials, exercises, and case studies that support students in learning data mining processes. In praise of the VisMiner approach: «What we discovered among students was that the visualization concepts and tools brought the analysis alive in a way that was broadly understood and could be used to make sound decisions with greater certainty about the outcomes» —Dr. James V. Hansen, J. Owen Cherrington Professor, Marriott School, Brigham Young University, USA «Students learn best when they are able to visualize relationships between data and results during the data mining process. VisMiner is easy to learn and yet offers great visualization capabilities throughout the data mining process. My students liked it very much and so did I.» —Dr. Douglas Dean, Assoc. Professor of Information Systems, Marriott School, Brigham Young University, USA
Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with JMP Pro Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with JMP Pro Новинка

Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with JMP Pro

10261.41 руб. или Купить в рассрочку!
Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field. Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks, and book chapters, including Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective and co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner ®, Third Edition, both published by Wiley. Mia Stephens is Academic Ambassador at JMP®, a division of SAS Institute. Prior to joining SAS, she was an adjunct professor of statistics at the University of New Hampshire and a founding member of the North Haven Group LLC, a statistical training and consulting company. She is the co-author of three other books, including Visual Six Sigma: Making Data Analysis Lean, Second Edition, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. He is co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley.
Hengqing Tong Developing Econometrics Hengqing Tong Developing Econometrics Новинка

Hengqing Tong Developing Econometrics

9652.79 руб. или Купить в рассрочку!
Statistical Theories and Methods with Applications to Economics and Business highlights recent advances in statistical theory and methods that benefit econometric practice. It deals with exploratory data analysis, a prerequisite to statistical modelling and part of data mining. It provides recently developed computational tools useful for data mining, analysing the reasons to do data mining and the best techniques to use in a given situation. Provides a detailed description of computer algorithms. Provides recently developed computational tools useful for data mining Highlights recent advances in statistical theory and methods that benefit econometric practice. Features examples with real life data. Accompanying software featuring DASC (Data Analysis and Statistical Computing). Essential reading for practitioners in any area of econometrics; business analysts involved in economics and management; and Graduate students and researchers in economics and statistics.
Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining Новинка

Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining

6053.99 руб. или Купить в рассрочку!
Praise for the First Edition “…a well-written book on data analysis and data mining that provides an excellent foundation…” —CHOICE “This is a must-read book for learning practical statistics and data analysis…” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.
Samira ElAtia Data Mining and Learning Analytics. Applications in Educational Research Samira ElAtia Data Mining and Learning Analytics. Applications in Educational Research Новинка

Samira ElAtia Data Mining and Learning Analytics. Applications in Educational Research

9881.38 руб. или Купить в рассрочку!
Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.
Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with XLMiner Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with XLMiner Новинка

Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with XLMiner

10261.41 руб. или Купить в рассрочку!
Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition «…full of vivid and thought-provoking anecdotes… needs to be read by anyone with a serious interest in research and marketing.»– Research Magazine «Shmueli et al. have done a wonderful job in presenting the field of data mining – a welcome addition to the literature.» – ComputingReviews.com «Excellent choice for business analysts…The book is a perfect fit for its intended audience.» – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.
Darius Dziuda M. Data Mining for Genomics and Proteomics. Analysis of Gene and Protein Expression Data Darius Dziuda M. Data Mining for Genomics and Proteomics. Analysis of Gene and Protein Expression Data Новинка

Darius Dziuda M. Data Mining for Genomics and Proteomics. Analysis of Gene and Protein Expression Data

Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.
Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making Новинка

Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making

14358.83 руб. или Купить в рассрочку!
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
He You Radar Data Processing With Applications He You Radar Data Processing With Applications Новинка

He You Radar Data Processing With Applications

12161.54 руб. или Купить в рассрочку!
A systematic introduction to the theory, development and latest research results of radar data processing technology • Presents both classical theory and development methods of radar data processing • Provides state-of-the-art research results, including data processing for modern style radars, and tracking performance evaluation theory • Includes coverage of performance evaluation, registration algorithm for Radar network, data processing of passive radar, pulse Doppler radar, and phased array radar • Has applications for those engaged in information engineering, radar engineering, electronic countermeasures, infrared techniques, sonar techniques, and military command
Clarisse Dhaenens Metaheuristics for Big Data Clarisse Dhaenens Metaheuristics for Big Data Новинка

Clarisse Dhaenens Metaheuristics for Big Data

7981.26 руб. или Купить в рассрочку!
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.
Stéphane Tufféry Data Mining and Statistics for Decision Making Stéphane Tufféry Data Mining and Statistics for Decision Making Новинка

Stéphane Tufféry Data Mining and Statistics for Decision Making

7990.49 руб. или Купить в рассрочку!
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Daniel Larose T. Data Mining and Predictive Analytics Daniel Larose T. Data Mining and Predictive Analytics Новинка

Daniel Larose T. Data Mining and Predictive Analytics

10640.71 руб. или Купить в рассрочку!
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications in R Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications in R Новинка

Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications in R

10261.41 руб. или Купить в рассрочку!
Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American St
Ahlemeyer-Stubbe Andrea A Practical Guide to Data Mining for Business and Industry Ahlemeyer-Stubbe Andrea A Practical Guide to Data Mining for Business and Industry Новинка

Ahlemeyer-Stubbe Andrea A Practical Guide to Data Mining for Business and Industry

6442.07 руб. или Купить в рассрочку!
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.
Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery Новинка

Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery

8740.59 руб. или Купить в рассрочку!
A comprehensive introduction to statistical methods for data mining and knowledge discovery. Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.
Thomas Hammergren C. Data Warehousing For Dummies Thomas Hammergren C. Data Warehousing For Dummies Новинка

Thomas Hammergren C. Data Warehousing For Dummies

2263.13 руб. или Купить в рассрочку!
Data warehousing is one of the hottest business topics, and there’s more to understanding data warehousing technologies than you might think. Find out the basics of data warehousing and how it facilitates data mining and business intelligence with Data Warehousing For Dummies, 2nd Edition. Data is probably your company’s most important asset, so your data warehouse should serve your needs. The fully updated Second Edition of Data Warehousing For Dummies helps you understand, develop, implement, and use data warehouses, and offers a sneak peek into their future. You’ll learn to: Analyze top-down and bottom-up data warehouse designs Understand the structure and technologies of data warehouses, operational data stores, and data marts Choose your project team and apply best development practices to your data warehousing projects Implement a data warehouse, step by step, and involve end-users in the process Review and upgrade existing data storage to make it serve your needs Comprehend OLAP, column-wise databases, hardware assisted databases, and middleware Use data mining intelligently and find what you need Make informed choices about consultants and data warehousing products Data Warehousing For Dummies, 2nd Edition also shows you how to involve users in the testing process and gain valuable feedback, what it takes to successfully manage a data warehouse project, and how to tell if your project is on track. You’ll find it’s the most useful source of data on the topic!
Albalate Amparo Semi-Supervised and Unsupervised Machine Learning. Novel Strategies Albalate Amparo Semi-Supervised and Unsupervised Machine Learning. Novel Strategies Новинка

Albalate Amparo Semi-Supervised and Unsupervised Machine Learning. Novel Strategies

8770.53 руб. или Купить в рассрочку!
This book provides a detailed and up-to-date overview on classification and data mining methods. The first part is focused on supervised classification algorithms and their applications, including recent research on the combination of classifiers. The second part deals with unsupervised data mining and knowledge discovery, with special attention to text mining. Discovering the underlying structure on a data set has been a key research topic associated to unsupervised techniques with multiple applications and challenges, from web-content mining to the inference of cancer subtypes in genomic microarray data. Among those, the book focuses on a new application for dialog systems which can be thereby made adaptable and portable to different domains. Clustering evaluation metrics and new approaches, such as the ensembles of clustering algorithms, are also described.
Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery, Solutions Manual Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery, Solutions Manual Новинка

Walter Piegorsch W. Statistical Data Analytics. Foundations for Data Mining, Informatics, and Knowledge Discovery, Solutions Manual

2089.78 руб. или Купить в рассрочку!
Solutions Manual to accompany Statistical Data Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery A comprehensive introduction to statistical methods for data mining and knowledge discovery. Extensive solutions using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.
Nii Attoh-Okine O. Big Data and Differential Privacy. Analysis Strategies for Railway Track Engineering Nii Attoh-Okine O. Big Data and Differential Privacy. Analysis Strategies for Railway Track Engineering Новинка

Nii Attoh-Okine O. Big Data and Differential Privacy. Analysis Strategies for Railway Track Engineering

10261.41 руб. или Купить в рассрочку!
A comprehensive introduction to the theory and practice of contemporary data science analysis for railway track engineering Featuring a practical introduction to state-of-the-art data analysis for railway track engineering, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering addresses common issues with the implementation of big data applications while exploring the limitations, advantages, and disadvantages of more conventional methods. In addition, the book provides a unifying approach to analyzing large volumes of data in railway track engineering using an array of proven methods and software technologies. Dr. Attoh-Okine considers some of today’s most notable applications and implementations and highlights when a particular method or algorithm is most appropriate. Throughout, the book presents numerous real-world examples to illustrate the latest railway engineering big data applications of predictive analytics, such as the Union Pacific Railroad’s use of big data to reduce train derailments, increase the velocity of shipments, and reduce emissions. In addition to providing an overview of the latest software tools used to analyze the large amount of data obtained by railways, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering: • Features a unified framework for handling large volumes of data in railway track engineering using predictive analytics, machine learning, and data mining • Explores issues of big data and differential privacy and discusses the various advantages and disadvantages of more conventional data analysis techniques • Implements big data applications while addressing common issues in railway track maintenance • Explores the advantages and pitfalls of data analysis software such as R and Spark, as well as the Apache™ Hadoop® data collection database and its popular implementation MapReduce Big Data and Differential Privacy is a valuable resource for researchers and professionals in transportation science, railway track engineering, design engineering, operations research, and railway planning and management. The book is also appropriate for graduate courses on data analysis and data mining, transportation science, operations research, and infrastructure management. NII ATTOH-OKINE, PhD, PE is Professor in the Department of Civil and Environmental Engineering at the University of Delaware. The author of over 70 journal articles, his main areas of research include big data and data science; computational intelligence; graphical models and belief functions; civil infrastructure systems; image and signal processing; resilience engineering; and railway track analysis. Dr. Attoh-Okine has edited five books in the areas of computational intelligence, infrastructure systems and has served as an Associate Editor of various ASCE and IEEE journals.
Data Mining (+CD). Учебный курс Data Mining (+CD). Учебный курс Новинка

Data Mining (+CD). Учебный курс

Data Mining — это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний (закономерностей).В книге приводится объективный аналитический обзор методов и программных продуктов Data Mining. Подробно рассматриваются статистические пакеты, нейросети, эволюционные методы и алгоритмы поиска логических закономерностей. Описываются наиболее популярные инструментальные средства Data Mining. Разбираются практические примеры.Для студентов, аспирантов, разработчиков интеллектуальных систем и широкой аудитории читателей, интересующихся проблемами анализа данных.
Hugo Kubinyi Data Mining in Drug Discovery Hugo Kubinyi Data Mining in Drug Discovery Новинка

Hugo Kubinyi Data Mining in Drug Discovery

14897.43 руб. или Купить в рассрочку!
Written for drug developers rather than computer scientists, this monograph adopts a systematic approach to mining scientifi c data sources, covering all key steps in rational drug discovery, from compound screening to lead compound selection and personalized medicine. Clearly divided into four sections, the first part discusses the different data sources available, both commercial and non-commercial, while the next section looks at the role and value of data mining in drug discovery. The third part compares the most common applications and strategies for polypharmacology, where data mining can substantially enhance the research effort. The final section of the book is devoted to systems biology approaches for compound testing. Throughout the book, industrial and academic drug discovery strategies are addressed, with contributors coming from both areas, enabling an informed decision on when and which data mining tools to use for one's own drug discovery project.
John Tanner F. Analytics and Dynamic Customer Strategy. Big Profits from Big Data John Tanner F. Analytics and Dynamic Customer Strategy. Big Profits from Big Data Новинка

John Tanner F. Analytics and Dynamic Customer Strategy. Big Profits from Big Data

3230.74 руб. или Купить в рассрочку!
Key decisions determine the success of big data strategy Dynamic Customer Strategy: Big Profits from Big Data is a comprehensive guide to exploiting big data for both business-to-consumer and business-to-business marketing. This complete guide provides a process for rigorous decision making in navigating the data-driven industry shift, informing marketing practice, and aiding businesses in early adoption. Using data from a five-year study to illustrate important concepts and scenarios along the way, the author speaks directly to marketing and operations professionals who may not necessarily be big data savvy. With expert insight and clear analysis, the book helps eliminate paralysis-by-analysis and optimize decision making for marketing performance. Nearly seventy-five percent of marketers plan to adopt a big data analytics solution within two years, but many are likely to fail. Despite intensive planning, generous spending, and the best intentions, these initiatives will not succeed without a manager at the helm who is capable of handling the nuances of big data projects. This requires a new way of marketing, and a new approach to data. It means applying new models and metrics to brand new consumer behaviors. Dynamic Customer Strategy clarifies the situation, and highlights the key decisions that have the greatest impact on a company's big data plan. Topics include: Applying the elements of Dynamic Customer Strategy Acquiring, mining, and analyzing data Metrics and models for big data utilization Shifting perspective from model to customer Big data is a tremendous opportunity for marketers and may just be the only factor that will allow marketers to keep pace with the changing consumer and thus keep brands relevant at a time of unprecedented choice. But like any tool, it must be wielded with skill and precision. Dynamic Customer Strategy: Big Profits from Big Data helps marketers shape a strategy that works.
Victor Rudenno The Mining Valuation Handbook. Mining and Energy Valuation for Investors and Management Victor Rudenno The Mining Valuation Handbook. Mining and Energy Valuation for Investors and Management Новинка

Victor Rudenno The Mining Valuation Handbook. Mining and Energy Valuation for Investors and Management

10866.14 руб. или Купить в рассрочку!
The essential guide to investing in mining opportunities, now in its Fourth Edition A comprehensive guide to mining investment analysis designed for use by financial and mining analysts, executives, and investors, The Mining Valuation Handbook: Mining and Energy Valuation for Investors and Management has become an essential resource for assessing the value and investment potential of mining opportunities. Fully revised and updated, this fourth edition of the classic text provides new and up-to-date information to better explain the mysteries surrounding the resources industry. Written by Victor Rudenno, a leading global expert on mining investment analysis and consultant to mining companies, financial bodies, and governments, The Mining Valuation Handbook: Mining and Energy Valuation for Investors and Management, Fourth Edition covers a wide range of essential topics, including: feasibility studies, commodity values and forecasting, classification of resources and reserves, indicative capital and operating costs, valuation and pricing techniques, qualifying risk, the impact of exploration and expansion, and more. Fourth edition of the bestselling text on assessing mining investment opportunities Author Victor Rudenno is a respected global expert on mining investment analysis Key topics, including feasibility studies, valuation techniques, and risk qualification are covered in detail Packed with invaluable mining information for the financial industry and financial information for the mining industry, The Mining Valuation Handbook is the definitive guide to assessing and investing in mining opportunities.
Provost Lloyd P. The Health Care Data Guide. Learning from Data for Improvement Provost Lloyd P. The Health Care Data Guide. Learning from Data for Improvement Новинка

Provost Lloyd P. The Health Care Data Guide. Learning from Data for Improvement

7373.45 руб. или Купить в рассрочку!
The Health Care Data Guide is designed to help students and professionals build a skill set specific to using data for improvement of health care processes and systems. Even experienced data users will find valuable resources among the tools and cases that enrich The Health Care Data Guide. Practical and step-by-step, this book spotlights statistical process control (SPC) and develops a philosophy, a strategy, and a set of methods for ongoing improvement to yield better outcomes. Provost and Murray reveal how to put SPC into practice for a wide range of applications including evaluating current process performance, searching for ideas for and determining evidence of improvement, and tracking and documenting sustainability of improvement. A comprehensive overview of graphical methods in SPC includes Shewhart charts, run charts, frequency plots, Pareto analysis, and scatter diagrams. Other topics include stratification and rational sub-grouping of data and methods to help predict performance of processes. Illustrative examples and case studies encourage users to evaluate their knowledge and skills interactively and provide opportunity to develop additional skills and confidence in displaying and interpreting data. Companion Web site: www.josseybass.com/go/provost
Alan Anderson Statistics for Big Data For Dummies Alan Anderson Statistics for Big Data For Dummies Новинка

Alan Anderson Statistics for Big Data For Dummies

1486.98 руб. или Купить в рассрочку!
The fast and easy way to make sense of statistics for big data Does the subject of data analysis make you dizzy? You've come to the right place! Statistics For Big Data For Dummies breaks this often-overwhelming subject down into easily digestible parts, offering new and aspiring data analysts the foundation they need to be successful in the field. Inside, you'll find an easy-to-follow introduction to exploratory data analysis, the lowdown on collecting, cleaning, and organizing data, everything you need to know about interpreting data using common software and programming languages, plain-English explanations of how to make sense of data in the real world, and much more. Data has never been easier to come by, and the tools students and professionals need to enter the world of big data are based on applied statistics. While the word «statistics» alone can evoke feelings of anxiety in even the most confident student or professional, it doesn't have to. Written in the familiar and friendly tone that has defined the For Dummies brand for more than twenty years, Statistics For Big Data For Dummies takes the intimidation out of the subject, offering clear explanations and tons of step-by-step instruction to help you make sense of data mining—without losing your cool. Helps you to identify valid, useful, and understandable patterns in data Provides guidance on extracting previously unknown information from large databases Shows you how to discover patterns available in big data Gives you access to the latest tools and techniques for working in big data If you're a student enrolled in a related Applied Statistics course or a professional looking to expand your skillset, Statistics For Big Data For Dummies gives you access to everything you need to succeed.
Troy Hughes Martin SAS Data Analytic Development. Dimensions of Software Quality Troy Hughes Martin SAS Data Analytic Development. Dimensions of Software Quality Новинка

Troy Hughes Martin SAS Data Analytic Development. Dimensions of Software Quality

4850.96 руб. или Купить в рассрочку!
Design quality SAS software and evaluate SAS software quality SAS Data Analytic Development is the developer’s compendium for writing better-performing software and the manager’s guide to building comprehensive software performance requirements. The text introduces and parallels the International Organization for Standardization (ISO) software product quality model, demonstrating 15 performance requirements that represent dimensions of software quality, including: reliability, recoverability, robustness, execution efficiency (i.e., speed), efficiency, scalability, portability, security, automation, maintainability, modularity, readability, testability, stability, and reusability. The text is intended to be read cover-to-cover or used as a reference tool to instruct, inspire, deliver, and evaluate software quality. A common fault in many software development environments is a focus on functional requirements—the what and how—to the detriment of performance requirements, which specify instead how well software should function (assessed through software execution) or how easily software should be maintained (assessed through code inspection). Without the definition and communication of performance requirements, developers risk either building software that lacks intended quality or wasting time delivering software that exceeds performance objectives—thus, either underperforming or gold-plating, both of which are undesirable. Managers, customers, and other decision makers should also understand the dimensions of software quality both to define performance requirements at project outset as well as to evaluate whether those objectives were met at software completion. As data analytic software, SAS transforms data into information and ultimately knowledge and data-driven decisions. Not surprisingly, data quality is a central focus and theme of SAS literature; however, code quality is far less commonly described and too often references only the speed or efficiency with which software should execute, omitting other critical dimensions of software quality. SAS® software project definitions and technical requirements often fall victim to this paradox, in which rigorous quality requirements exist for data and data products yet not for the software that undergirds them. By demonstrating the cost and benefits of software quality inclusion and the risk of software quality exclusion, stakeholders learn to value, prioritize, implement, and evaluate dimensions of software quality within risk management and project management frameworks of the software development life cycle (SDLC). Thus, SAS Data Analytic Development recalibrates business value, placing code quality on par with data quality, and performance requirements on par with functional requirements.
Patrick LeBlanc Applied Microsoft Business Intelligence Patrick LeBlanc Applied Microsoft Business Intelligence Новинка

Patrick LeBlanc Applied Microsoft Business Intelligence

3233.97 руб. или Купить в рассрочку!
Leverage the integration of SQL Server and Office for more effective BI Applied Microsoft Business Intelligence shows you how to leverage the complete set of Microsoft tools—including Microsoft Office and SQL Server—to better analyze business data. This book provides best practices for building complete BI solutions using the full Microsoft toolset. You will learn how to effectively use SQL Server Analysis and Reporting Services, along with Excel, SharePoint, and other tools to provide effective and cohesive solutions for the enterprise. Coverage includes BI architecture, data queries, semantic models, multidimensional modeling, data analysis and visualization, performance monitoring, data mining, and more, to help you learn to perform practical business analysis and reporting. Written by an author team that includes a key member of the BI product team at Microsoft, this useful reference provides expert instruction for more effective use of the Microsoft BI toolset. Use Microsoft BI suite cohesively for more effective enterprise solutions Search, analyze, and visualize data more efficiently and completely Develop flexible and scalable tabular and multidimensional models Monitor performance, build a BI portal, and deploy and manage the BI Solution
Ajay Ohri Python for R Users. A Data Science Approach Ajay Ohri Python for R Users. A Data Science Approach Новинка

Ajay Ohri Python for R Users. A Data Science Approach

5316.75 руб. или Купить в рассрочку!
The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.
Trevor Strome L. Healthcare Analytics for Quality and Performance Improvement Trevor Strome L. Healthcare Analytics for Quality and Performance Improvement Новинка

Trevor Strome L. Healthcare Analytics for Quality and Performance Improvement

4850.96 руб. или Купить в рассрочку!
Improve patient outcomes, lower costs, reduce fraud—all with healthcare analytics Healthcare Analytics for Quality and Performance Improvement walks your healthcare organization from relying on generic reports and dashboards to developing powerful analytic applications that drive effective decision-making throughout your organization. Renowned healthcare analytics leader Trevor Strome reveals in this groundbreaking volume the true potential of analytics to harness the vast amounts of data being generated in order to improve the decision-making ability of healthcare managers and improvement teams. Examines how technology has impacted healthcare delivery Discusses the challenge facing healthcare organizations: to leverage advances in both clinical and information technology to improve quality and performance while containing costs Explores the tools and techniques to analyze and extract value from healthcare data Demonstrates how the clinical, business, and technology components of healthcare organizations (HCOs) must work together to leverage analytics Other industries are already taking advantage of big data. Healthcare Analytics for Quality and Performance Improvement helps the healthcare industry make the most of the precious data already at its fingertips for long-overdue quality and performance improvement.
Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis Новинка

Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis

9857.14 руб. или Купить в рассрочку!
Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
И. И. Холод Технологии анализа данных: Data Mining, Visual Mining, Text Mining, OLAP И. И. Холод Технологии анализа данных: Data Mining, Visual Mining, Text Mining, OLAP Новинка

И. И. Холод Технологии анализа данных: Data Mining, Visual Mining, Text Mining, OLAP

Книга является вторым, обновленным и дополненным, изданием учебного пособия «Методы и модели анализа данных: OLAP и Data Mining». Излагаются основные направления в области разработки корпоративных систем: организация хранилищ данных, распределенный, оперативный (OLAP), интеллектуальный (Data Mining), визуальный (Visual Mining) и текстовый (Text Mining) анализ данных. Приведено описание методов и алгоритмов решения основных задач анализа: классификации, кластеризации и др. Описание идеи каждого метода дополняется конкретным примером его применения. Для студентов и специалистов в области анализа данных.
Paulraj Ponniah Data Warehousing Fundamentals for IT Professionals Paulraj Ponniah Data Warehousing Fundamentals for IT Professionals Новинка

Paulraj Ponniah Data Warehousing Fundamentals for IT Professionals

11409.45 руб. или Купить в рассрочку!
Cutting-edge content and guidance from a data warehousing expert—now expanded to reflect field trends Data warehousing has revolutionized the way businesses in a wide variety of industries perform analysis and make strategic decisions. Since the first edition of Data Warehousing Fundamentals, numerous enterprises have implemented data warehouse systems and reaped enormous benefits. Many more are in the process of doing so. Now, this new, revised edition covers the essential fundamentals of data warehousing and business intelligence as well as significant recent trends in the field. The author provides an enhanced, comprehensive overview of data warehousing together with in-depth explanations of critical issues in planning, design, deployment, and ongoing maintenance. IT professionals eager to get into the field will gain a clear understanding of techniques for data extraction from source systems, data cleansing, data transformations, data warehouse architecture and infrastructure, and the various methods for information delivery. This practical Second Edition highlights the areas of data warehousing and business intelligence where high-impact technological progress has been made. Discussions on developments include data marts, real-time information delivery, data visualization, requirements gathering methods, multi-tier architecture, OLAP applications, Web clickstream analysis, data warehouse appliances, and data mining techniques. The book also contains review questions and exercises for each chapter, appropriate for self-study or classroom work, industry examples of real-world situations, and several appendices with valuable information. Specifically written for professionals responsible for designing, implementing, or maintaining data warehousing systems, Data Warehousing Fundamentals presents agile, thorough, and systematic development principles for the IT professional and anyone working or researching in information management.
George James A. Smart Data. Enterprise Performance Optimization Strategy George James A. Smart Data. Enterprise Performance Optimization Strategy Новинка

George James A. Smart Data. Enterprise Performance Optimization Strategy

10866.14 руб. или Купить в рассрочку!
The authors advocate attention to smart data strategy as an organizing element of enterprise performance optimization. They believe that “smart data” as a corporate priority could revolutionize government or commercial enterprise performance much like “six sigma” or “total quality” as organizing paradigms have done in the past. This revolution has not yet taken place because data historically resides in the province of the information resources organization. Solutions that render data smart are articulated in “technoid” terms versus the language of the board room. While books such as Adaptive Information by Pollock and Hodgson ably describe the current state of the art, their necessarily technical tone is not conducive to corporate or agency wide qualitative change.
Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business Новинка

Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business

3230.74 руб. или Купить в рассрочку!
Tips, techniques, and trends on harnessing dashboard technology to optimize business performance In Performance Dashboards, Second Edition, author Wayne Eckerson explains what dashboards are, where they can be used, and why they are important to measuring and managing performance. As Director of Research for The Data Warehousing Institute, a worldwide association of business intelligence professionals, Eckerson interviewed dozens of organizations that have built various types of performance dashboards in different industries and lines of business. Their practical insights explore how you can effectively turbo-charge performance–management initiatives with dashboard technology. Includes all-new case studies, industry research, news chapters on «Architecting Performance Dashboards» and «Launching and Managing the Project» and updated information on designing KPIs, designing dashboard displays, integrating dashboards, and types of dashboards. Provides a solid foundation for understanding performance dashboards, business intelligence, and performance management Addresses the next generation of performance dashboards, such as Mashboards and Visual Discovery tools, and including new techniques for designing dashboards and developing key performance indicators Offers guidance on how to incorporate predictive analytics, what-if modeling, collaboration, and advanced visualization techniques This updated book, which is 75% rewritten, provides a foundation for understanding performance dashboards, business intelligence, and performance management to optimize performance and accelerate results.
Simon Munzert Automated Data Collection with R. A Practical Guide to Web Scraping and Text Mining Simon Munzert Automated Data Collection with R. A Practical Guide to Web Scraping and Text Mining Новинка

Simon Munzert Automated Data Collection with R. A Practical Guide to Web Scraping and Text Mining

6080.41 руб. или Купить в рассрочку!
A hands on guide to web scraping and text mining for both beginners and experienced users of R Introduces fundamental concepts of the main architecture of the web and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets (XPath and regular expressions). An extensive set of exercises are presented to guide the reader through each technique. Explores both supervised and unsupervised techniques as well as advanced techniques such as data scraping and text management. Case studies are featured throughout along with examples for each technique presented. R code and solutions to exercises featured in the book are provided on a supporting website.
Stephen McDaniel SAS For Dummies Stephen McDaniel SAS For Dummies Новинка

Stephen McDaniel SAS For Dummies

2483.04 руб. или Купить в рассрочку!
The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. SAS For Dummies, 2nd Edition gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide. SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and more Places special emphasis on Enterprise Guide and other analytical tools, covering all commonly used features Covers all commonly used features and shows you the practical applications you can put to work in your business Explores how to get various types of data into the software and how to work with databases Covers producing reports and Web reporting tools, analytics, macros, and working with your data In the easy-to-follow, no-nonsense For Dummies format, SAS For Dummies gives you the knowledge and the confidence to get SAS working for your organization. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Gordon Linoff S. Data Analysis Using SQL and Excel Gordon Linoff S. Data Analysis Using SQL and Excel Новинка

Gordon Linoff S. Data Analysis Using SQL and Excel

3800.25 руб. или Купить в рассрочку!
A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the «where» and «why» of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. Understand core analytic techniques that work with SQL and Excel Ensure your analytic approach gets you the results you need Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.
Malcolm Atkinson The Data Bonanza. Improving Knowledge Discovery in Science, Engineering, and Business Malcolm Atkinson The Data Bonanza. Improving Knowledge Discovery in Science, Engineering, and Business Новинка

Malcolm Atkinson The Data Bonanza. Improving Knowledge Discovery in Science, Engineering, and Business

8664.87 руб. или Купить в рассрочку!
Complete guidance for mastering the tools and techniques of the digital revolution With the digital revolution opening up tremendous opportunities in many fields, there is a growing need for skilled professionals who can develop data-intensive systems and extract information and knowledge from them. This book frames for the first time a new systematic approach for tackling the challenges of data-intensive computing, providing decision makers and technical experts alike with practical tools for dealing with our exploding data collections. Emphasizing data-intensive thinking and interdisciplinary collaboration, The Data Bonanza: Improving Knowledge Discovery in Science, Engineering, and Business examines the essential components of knowledge discovery, surveys many of the current research efforts worldwide, and points to new areas for innovation. Complete with a wealth of examples and DISPEL-based methods demonstrating how to gain more from data in real-world systems, the book: Outlines the concepts and rationale for implementing data-intensive computing in organizations Covers from the ground up problem-solving strategies for data analysis in a data-rich world Introduces techniques for data-intensive engineering using the Data-Intensive Systems Process Engineering Language DISPEL Features in-depth case studies in customer relations, environmental hazards, seismology, and more Showcases successful applications in areas ranging from astronomy and the humanities to transport engineering Includes sample program snippets throughout the text as well as additional materials on a companion website The Data Bonanza is a must-have guide for information strategists, data analysts, and engineers in business, research, and government, and for anyone wishing to be on the cutting edge of data mining, machine learning, databases, distributed systems, or large-scale computing.
Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine Новинка

Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine

13190.72 руб. или Купить в рассрочку!
This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of «omic» data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided with the knowledge needed to assess the requirements, computational approaches and outputs in disease biomarker research. Commentaries from guest experts are also included, containing detailed discussions of methodologies and applications based on specific types of «omic» data, as well as their integration. Covers the main range of data sources currently used for biomarker discovery Covers the main range of data sources currently used for biomarker discovery Puts emphasis on concepts, design principles and methodologies that can be extended or tailored to more specific applications Offers principles and methods for assessing the bioinformatic/biostatistic limitations, strengths and challenges in biomarker discovery studies Discusses systems biology approaches and applications Includes expert chapter commentaries to further discuss relevance of techniques, summarize biological/clinical implications and provide alternative interpretations
Shmueli Galit Modeling Online Auctions Shmueli Galit Modeling Online Auctions Новинка

Shmueli Galit Modeling Online Auctions

10555.68 руб. или Купить в рассрочку!
Explore cutting-edge statistical methodologies for collecting, analyzing, and modeling online auction data Online auctions are an increasingly important marketplace, as the new mechanisms and formats underlying these auctions have enabled the capturing and recording of large amounts of bidding data that are used to make important business decisions. As a result, new statistical ideas and innovation are needed to understand bidders, sellers, and prices. Combining methodologies from the fields of statistics, data mining, information systems, and economics, Modeling Online Auctions introduces a new approach to identifying obstacles and asking new questions using online auction data. The authors draw upon their extensive experience to introduce the latest methods for extracting new knowledge from online auction data. Rather than approach the topic from the traditional game-theoretic perspective, the book treats the online auction mechanism as a data generator, outlining methods to collect, explore, model, and forecast data. Topics covered include: Data collection methods for online auctions and related issues that arise in drawing data samples from a Web site Models for bidder and bid arrivals, treating the different approaches for exploring bidder-seller networks Data exploration, such as integration of time series and cross-sectional information; curve clustering; semi-continuous data structures; and data hierarchies The use of functional regression as well as functional differential equation models, spatial models, and stochastic models for capturing relationships in auction data Specialized methods and models for forecasting auction prices and their applications in automated bidding decision rule systems Throughout the book, R and MATLAB software are used for illustrating the discussed techniques. In addition, a related Web site features many of the book's datasets and R and MATLAB code that allow readers to replicate the analyses and learn new methods to apply to their own research. Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes. Visit this book's companion website by clicking here
Erik Pilawskii Fighter Aircraft Performance of WW2 Erik Pilawskii Fighter Aircraft Performance of WW2 Новинка

Erik Pilawskii Fighter Aircraft Performance of WW2

A scientific examination of the fighter aircraft of the Second World War. All aspects of performance and aircraft details are reviewed in detail. Various designs are compared to each other in theoretical single combat to emphasise each respective machine's strengths and weaknesses. Historical context is provided for each theatre of operation, and by date and campaign. A full-page data card is provided for each aircraft giving many detail specifications for the type.
Richard Middlestead W. Digital Communications with Emphasis on Data Modems. Theory, Analysis, Design, Simulation, Testing, and Applications Richard Middlestead W. Digital Communications with Emphasis on Data Modems. Theory, Analysis, Design, Simulation, Testing, and Applications Новинка

Richard Middlestead W. Digital Communications with Emphasis on Data Modems. Theory, Analysis, Design, Simulation, Testing, and Applications

14441.69 руб. или Купить в рассрочку!
This book uses a practical approach in the application of theoretical concepts to digital communications in the design of software defined radio modems. This book discusses the design, implementation and performance verification of waveforms and algorithms appropriate for digital data modulation and demodulation in modern communication systems. Using a building-block approach, the author provides an introductory to the advanced understanding of acquisition and data detection using source and executable simulation code to validate the communication system performance with respect to theory and design specifications. The author focuses on theoretical analysis, algorithm design, firmware and software designs and subsystem and system testing. This book treats system designs with a variety of channel characteristics from very low to optical frequencies. This book offers system analysis and subsystem implementation options for acquisition and data detection appropriate to the channel conditions and system specifications, and provides test methods for demonstrating system performance. This book also: Outlines fundamental system requirements and related analysis that must be established prior to a detailed subsystem design Includes many examples that highlight various analytical solutions and case studies that characterize various system performance measures Discusses various aspects of atmospheric propagation using the spherical 4/3 effective earth radius model Examines Ionospheric propagation and uses the Rayleigh fading channel to evaluate link performance using several robust waveform modulations Contains end-of-chapter problems, allowing the reader to further engage with the text Digital Communications with Emphasis on Data Modems is a great resource for communication-system and digital signal processing engineers and students looking for in-depth theory as well as practical implementations.
И. И. Холод Анализ данных и процессов И. И. Холод Анализ данных и процессов Новинка

И. И. Холод Анализ данных и процессов

Излагаются основные направления в области разработки корпоративных систем: организация хранилищ данных, оперативный (OLAP) и интеллектуальный (Data Mining) анализ данных. В третьем издании по сравнению со вторым, выходившем под названием «Технологии анализа данных: Data Mining, Text Mining, Visual Mining, OLAP», добавлены визуальный (Visual Mining) и текстовый (Text Mining) анализ данных, анализ процессов (Process Mining), анализ Web-ресурсов (Web mining) и анализ в режиме реального времени (Real-Time Data Mining). Приведено описание методов и алгоритмов решения основных задач анализа: классификации, кластеризации и др. Описание идеи каждого метода дополняется конкретным примером его использования. Для студентов, инженеров и специалистов в области анализа данных и процессов. (Компакт-диск прилагается только к печатному изданию.)
Арменак Барсегян, Михаил Куприянов, Иван Холод, Михаил Тесс, Сергей Елизаров Анализ данных и процессов Арменак Барсегян, Михаил Куприянов, Иван Холод, Михаил Тесс, Сергей Елизаров Анализ данных и процессов Новинка

Арменак Барсегян, Михаил Куприянов, Иван Холод, Михаил Тесс, Сергей Елизаров Анализ данных и процессов

Излагаются основные направления в области разработки систем: организация хранилищ данных, оперативный (OLAP) и интеллектуальный (Data Mining) анализ данных. В третьем издании по сравнению со вторым, выходившем под названием "Технологии анализа данных: Data Mining, Text Mining, Visual Mining, OLAP", добавлены визуальный (Visual Mining) и текстовый (Text Mining) анализ данных, анализ процессов (Process Mining), анализ Web-ресурсов (Web mining) и анализ в режиме реального времени (Real-Time Data Mining). Приведено описание методов и алгоритмов решения основных задач анализа: классификации, кластеризации и др. Описание идеи каждого метода дополняется конкретным примером его использования.Издательство: БХВ-Петербург
Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business Новинка

Wayne Eckerson W. Performance Dashboards. Measuring, Monitoring, and Managing Your Business

3230.74 руб. или Купить в рассрочку!
Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
Jeremy Hall L. Managing and Measuring Performance in Public and Nonprofit Organizations. An Integrated Approach Jeremy Hall L. Managing and Measuring Performance in Public and Nonprofit Organizations. An Integrated Approach Новинка

Jeremy Hall L. Managing and Measuring Performance in Public and Nonprofit Organizations. An Integrated Approach

5357.85 руб. или Купить в рассрочку!
New edition of a classic guide to ensuring effective organizational performance Thoroughly revised and updated, the second edition of Managing and Measuring Performance in Public and Nonprofit Organizations is a comprehensive resource for designing and implementing effective performance management and measurement systems in public and nonprofit organizations. The ideas, tools, and processes in this vital resource are designed to help organizations develop measurement systems to support such effective management approaches as strategic management, results-based budgeting, performance management, process improvement, performance contracting, and much more. The book will help readers identify outcomes and other performance criteria to be measured, tie measures to goals and objectives, define and evaluate the worth of desired performance measures, and analyze, process, report, and utilize data effectively. Includes significant updates that offer a more integrated approach to performance management and measurement Offers a detailed framework and instructions for developing and implementing performance management systems Shows how to apply the most effective performance management principles Reveals how to overcome the barriers to effective performance management Managing and Measuring Performance in Public and Nonprofit Organizations identifies common methodological and managerial problems that often confront managers in developing performance measurement systems, and presents a number of targeted strategies for the successful implementation of such systems in public and nonprofit organizations. This must-have resource will help leaders reach their organizational goals and objectives.
William Rothwell J. Performance Consulting. Applying Performance Improvement in Human Resource Development William Rothwell J. Performance Consulting. Applying Performance Improvement in Human Resource Development Новинка

William Rothwell J. Performance Consulting. Applying Performance Improvement in Human Resource Development

9701.91 руб. или Купить в рассрочку!
Praise for Performance Consulting «You hold in your hands an outstanding portrayal of the half-century evolution of performance improvement. Rothwell and his colleagues have written the most comprehensive performance consulting book on the market. From data collection and analysis to implementing solutions, Performance Consulting provides a roadmap to guide you on the path to becoming a successful performance consultant. The roadmap includes countless signposts in the form of exercises, processes, examples, tools, and advice to ensure you reach your final destination successfully.» —Elaine Biech, president, ebb associates and author of The Business of Consulting «This book provides a wealth of resources performance consultants can use for performance analysis and solution selection. The many case studies, references, and discussion questions throughout the text make this book both practical and substantive.» —Dana and Jim Robinson, co-authors of Performance Consulting: A Practical Guide for HR and Learning Professionals «In today's economic realities, performance consulting and performance improvement are critical to organizational success. The challenge for human resource development professionals is to shift the focus to performance improvement, not just applying classic training and learning solutions. Rothwell and his team have assembled perhaps the most comprehensive reference on this important field, complete with examples, illustrations, and a description of all of the pertinent models. This will be a 'must have' reference for any person involved in human resource development and human capital development.» —Jack Phillips Ph.D., chairman, ROI Institute, author of The Value of Learning
Chunlei Tang The Data Industry. The Business and Economics of Information and Big Data Chunlei Tang The Data Industry. The Business and Economics of Information and Big Data Новинка

Chunlei Tang The Data Industry. The Business and Economics of Information and Big Data

6076.08 руб. или Купить в рассрочку!
Provides an introduction of the data industry to the field of economics This book bridges the gap between economics and data science to help data scientists understand the economics of big data, and enable economists to analyze the data industry. It begins by explaining data resources and introduces the data asset. This book defines a data industry chain, enumerates data enterprises’ business models versus operating models, and proposes a mode of industrial development for the data industry. The author describes five types of enterprise agglomerations, and multiple industrial cluster effects. A discussion on the establishment and development of data industry related laws and regulations is provided. In addition, this book discusses several scenarios on how to convert data driving forces into productivity that can then serve society. This book is designed to serve as a reference and training guide for ata scientists, data-oriented managers and executives, entrepreneurs, scholars, and government employees. Defines and develops the concept of a “Data Industry,” and explains the economics of data to data scientists and statisticians Includes numerous case studies and examples from a variety of industries and disciplines Serves as a useful guide for practitioners and entrepreneurs in the business of data technology The Data Industry: The Business and Economics of Information and Big Data is a resource for practitioners in the data science industry, government, and students in economics, business, and statistics. CHUNLEI TANG, Ph.D., is a research fellow at Harvard University. She is the co-founder of Fudan’s Institute for Data Industry and proposed the concept of the “data industry”. She received a Ph.D. in Computer and Software Theory in 2012 and a Master of Software Engineering in 2006 from Fudan University, Shanghai, China.
Geoff Ingram High-Performance Oracle. Proven Methods for Achieving Optimum Performance and Availability Geoff Ingram High-Performance Oracle. Proven Methods for Achieving Optimum Performance and Availability Новинка

Geoff Ingram High-Performance Oracle. Proven Methods for Achieving Optimum Performance and Availability

3492.69 руб. или Купить в рассрочку!
"Geoff Ingram has met the challenge of presenting the complex process of managing Oracle performance. This book can support every technical person looking to resolve Oracle8i and Oracle9i performance issues." -Aki Ratner, President, Precise Software Solutions Ensuring high-performance and continuous availability of Oracle software is a key focus of database managers. At least a dozen books address the subject of «performance tuning»– that is, how to fine-tune the Oracle database for its greatest processing efficiency. Geoff Ingram argues that this approach simply isn't enough. He believes that performance needs to be addressed right from the design stage, and it needs to cover the entire system–not just the database. High-Performance Oracle is a hands-on book, loaded with tips and techniques for ensuring that the entire Oracle database system runs efficiently and doesn't break down. Written for Oracle developers and DBAs, and covering both Oracle8i and Oracle9i, the book goes beyond traditional performance-tuning books and covers the key techniques for ensuring 24/7 performance and availability of the complete Oracle system. The book provides practical solutions for: * Choosing physical layout for ease of administration and efficient use of space * Managing indexes, including detecting unused indexes and automating rebuilds * SQL and system tuning using the powerful new features in Oracle9i Release 2 * Improving SQL performance without modifying code * Running Oracle Real Application Clusters (RAC) for performance and availability * Protecting data using Recover Manager (RMAN), and physical and logical standby databases The companion Web site provides the complete source code for examples in the book, updates on techniques, and additional documentation for optimizing your Oracle system.

кешбака
Страницы:


Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American St
Продажа data mining for performance of vegetative filter strips лучших цены всего мира
Посредством этого сайта магазина - каталога товаров мы очень легко осуществляем продажу data mining for performance of vegetative filter strips у одного из интернет-магазинов проверенных фирм. Определитесь с вашими предпочтениями один интернет-магазин, с лучшей ценой продукта. Прочитав рекомендации по продаже data mining for performance of vegetative filter strips легко охарактеризовать производителя как превосходную и доступную фирму.