Новинка

7127 руб. или Купить в рассрочку!

Inhaltsangabe:Abstract: Building on approaches that have succeeded in applying semiotic principles and methodology to computer science, such as computer semiotics, computational semiotics, and semiotic interface engineering, this dissertation establishes a systematic account for those researchers who are ready to look at hypertext from a semiotic point of view. Rather than a new hypertext model, this work presents the prolegomena of a theory of hypertext semiotics, interlacing the existing models with the findings of semiotic research, on all levels of the textual, aural, visual, tactile and olfactory channels. A short history of hypertext, from its prehistory to today's state of the art systems and the current developments in the commercialized World Wide Web creates the context for this approach which should be seen as a fortification of the connection between the media semiotic approach and computer semiotics. While computer semioticians claim that the computer is a semiotic machine and Artificial Intelligence scientists underline the importance of semiotics for the construction of the next hypertext generation, this paper makes use of a much broader methodological basis. These findings are placed in the context of the commercialization of the Internet. Besides identifying the main challenges for eCommerce from the viewpoint of hypertext semiotics, the author concentrates on information goods and the current limitations for a new economy, such as restrictive intellectu...
Новинка

3376.24 руб. или Купить в рассрочку!

Smith-Acuña illuminates the structural hierarchy, roles, and boundaries that give a system structure. The relationship between parts and wholes is both simple and profound, and particularly important in looking at systems structure. These morsels of wisdom are good examples of Smith-Acuña's grace as a systems theory tour guide: one moment she's digging deeper into the nuances among the theories, the next moment she's simplifying without dumbing down, but in a manner that is enormously liberating. We enjoy the fun, full, and informed journey with her. —Frank S. Pittman III, MD A practical presentation of systems theory as a fundamental model for clinical practice Valuable for seasoned mental health professionals as well as those in training, Systems Theory in Action presents systems theory—the unifying principles surrounding the organization and functioning of systems—as it applies to individual, couples, and family therapy. This innovative book explores systems theory as an effective model for general mental health practice. It examines the role systems theory can play, specifically in understanding clients' presenting problems in context, within the various systems and subsystems in which the problems are embedded. Filled with realistic clinical stories illustrating relevant concepts that tie theory to technique, Systems Theory in Action takes an in-depth look at: Systems theory as a solid guide through the dynamic process of psychotherapy The multilayered value of observing human interactions through a systems view Systemic thinking, its core components, and how it serves to reveal a «big picture» view of clients and their presenting problems Systems Theory in Action is a unique contribution to the field, translating the technical terminology of general systems thinking into common, everyday language.
Новинка

11629.26 руб. или Купить в рассрочку!

Advanced research reference examining the closed and open quantum systems Control of Quantum Systems: Theory and Methods provides an insight into the modern approaches to control of quantum systems evolution, with a focus on both closed and open (dissipative) quantum systems. The topic is timely covering the newest research in the field, and presents and summarizes practical methods and addresses the more theoretical aspects of control, which are of high current interest, but which are not covered at this level in other text books. The quantum control theory and methods written in the book are the results of combination of macro-control theory and microscopic quantum system features. As the development of the nanotechnology progresses, the quantum control theory and methods proposed today are expected to be useful in real quantum systems within five years. The progress of the quantum control theory and methods will promote the progress and development of quantum information, quantum computing, and quantum communication. Equips readers with the potential theories and advanced methods to solve existing problems in quantum optics/information/computing, mesoscopic systems, spin systems, superconducting devices, nano-mechanical devices, precision metrology. Ideal for researchers, academics and engineers in quantum engineering, quantum computing, quantum information, quantum communication, quantum physics, and quantum chemistry, whose research interests are quantum systems control.
Новинка

3002 руб. или Купить в рассрочку!

This volume contians "A Semiotic Theory of Rune-Magic," "Is Sigurdr Sigmundr aptrborinn?" and other essays on heroic poetry and religious interpretation in the context of heresies of the Middle Ages and Celtic roots of heroic epic poetry in medieval Germany.
Новинка

9378.44 руб. или Купить в рассрочку!

A comprehensive guide to the theory, methodology, and development for modeling systems of systems Modeling and Managing Interdependent Complex Systems of Systems examines the complexity of, and the risk to, emergent interconnected and interdependent complex systems of systems in the natural and the constructed environment, and in its critical infrastructures. For systems modelers, this book focuses on what constitutes complexity and how to understand, model and manage it.Previous modeling methods for complex systems of systems were aimed at developing theory and methodologies for uncoupling the interdependencies and interconnections that characterize them. In this book, the author extends the above by utilizing public- and private- sector case studies; identifies, explores, and exploits the core of interdependencies; and seeks to understand their essence via the states of the system, and their dominant contributions to the complexity of systems of systems. The book proposes a reevaluation of fundamental and practical systems engineering and risk analysis concepts on complex systems of systems developed over the past 40 years. This important resource: Updates and streamlines systems engineering theory, methodology, and practice as applied to complex systems of systems Introduces modeling methodology inspired by philosophical and conceptual thinking from the arts and sciences Models the complexity of emergent interdependent and interconnected complex systems of systems by analyzing their shared states, decisions, resources, and decisionmakers Written for systems engineers, industrial engineers, managers, planners, academics and other professionals in engineering systems and the environment,this text is the resource for understanding the fundamental principles of modeling and managing complex systems of systems, and the risk thereto.
Новинка

6327 руб. или Купить в рассрочку!

The title of our volume on interdisciplinary semiotics is situated in a geographical metaphor and points to the possibility ofuncovering meanings through shifting perspectives as well as to the possibility of understanding how these various modes ofmeaning are articulated and framed in particular cultural instances. Regardless of medium, semiotic rotations permit playbetween the surface and underlying levels of a communication, reveal the relationship between open and closed systems ofsignification, and modulate shades of meaning caught between the visible and invisible. Readerly play in these sets of apparentoppositions reveals that the less each pairing is held to be a coupling of oppositions and the more they are observed throughperspectives gained by semiotic rotations, then the more complex and rich the modes of meaning may become.
Новинка

9985.34 руб. или Купить в рассрочку!

Presents the theory and methodology for reliability assessments of safety-critical functions through examples from a wide range of applications Reliability of Safety-Critical Systems: Theory and Applications provides a comprehensive introduction to reliability assessments of safety-related systems based on electrical, electronic, and programmable electronic (E/E/PE) technology. With a focus on the design and development phases of safety-critical systems, the book presents theory and methods required to document compliance with IEC 61508 and the associated sector-specific standards. Combining theory and practical applications, Reliability of Safety-Critical Systems: Theory and Applications implements key safety-related strategies and methods to meet quantitative safety integrity requirements. In addition, the book details a variety of reliability analysis methods that are needed during all stages of a safety-critical system, beginning with specification and design and advancing to operations, maintenance, and modification control. The key categories of safety life-cycle phases are featured, including strategies for the allocation of reliability performance requirements; assessment methods in relation to design; and reliability quantification in relation to operation and maintenance. Issues and benefits that arise from complex modern technology developments are featured, as well as: Real-world examples from large industry facilities with major accident potential and products owned by the general public such as cars and tools Plentiful worked examples throughout that provide readers with a deeper understanding of the core concepts and aid in the analysis and solution of common issues when assessing all facets of safety-critical systems Approaches that work on a wide scope of applications and can be applied to the analysis of any safety-critical system A brief appendix of probability theory for reference With an emphasis on how safety-critical functions are introduced into systems and facilities to prevent or mitigate the impact of an accident, this book is an excellent guide for professionals, consultants, and operators of safety-critical systems who carry out practical, risk, and reliability assessments of safety-critical systems. Reliability of Safety-Critical Systems: Theory and Applications is also a useful textbook for courses in reliability assessment of safety-critical systems and reliability engineering at the graduate-level, as well as for consulting companies offering short courses in reliability assessment of safety-critical systems.
Новинка

16431.02 руб. или Купить в рассрочку!

The technology of hydrodynamic modeling and marine craft motion control systems has progressed greatly in recent years. This timely survey includes the latest tools for analysis and design of advanced guidance, navigation and control systems and presents new material on underwater vehicles and surface vessels. Each section presents numerous case studies and applications, providing a practical understanding of how model-based motion control systems are designed. Key features include: a three-part structure covering Modeling of Marine Craft; Guidance, Navigation and Control Systems; and Appendices, providing all the supporting theory in a single resource kinematics, kinetics, hydrostatics, seakeeping and maneuvering theory, and simulation models for marine craft and environmental forces guidance systems, sensor fusion and integrated navigation systems, inertial measurement units, Kalman filtering and nonlinear observer design for marine craft state-of-the-art methods for feedback control more advanced methods using nonlinear theory, enabling the user to compare linear design techniques before a final implementation is made. linear and nonlinear stability theory, and numerical methods companion website that hosts links to lecture notes and download information for the Marine Systems Simulator (MSS) which is an open source Matlab/Simulink® toolbox for marine systems. The MSS toolbox includes hydrodynamic models and motion control systems for ships, underwater vehicles and floating structures With an appropriate balance between mathematical theory and practical applications, academic and industrial researchers working in marine and control engineering aspects of manned and unmanned maritime vehicles will benefit from this comprehensive handbook. It is also suitable for final year undergraduates and postgraduates, lecturers, development officers, and practitioners in the areas of rigid-body modeling, hydrodynamics, simulation of marine craft, control and estimation theory, decision-support systems and sensor fusion. www.wiley.com/go/fossen_marine
Новинка

5856.01 руб. или Купить в рассрочку!

Presents recent developments of probabilistic assessment of systems dependability based on stochastic models, including graph theory, finite state automaton and language theory, for both dynamic and hybrid contexts.
Новинка

12604.62 руб. или Купить в рассрочку!

Formation Control of Multi-Agent Systems: A Graph Rigidity Approach Marcio de Queiroz, Louisiana State University, USA Xiaoyu Cai, FARO Technologies, USA Matthew Feemster, U.S. Naval Academy, USA A comprehensive guide to formation control of multi-agent systems using rigid graph theory This book is the first to provide a comprehensive and unified treatment of the subject of graph rigidity-based formation control of multi-agent systems. Such systems are relevant to a variety of emerging engineering applications, including unmanned robotic vehicles and mobile sensor networks. Graph theory, and rigid graphs in particular, provides a natural tool for describing the multi-agent formation shape as well as the inter-agent sensing, communication, and control topology. Beginning with an introduction to rigid graph theory, the contents of the book are organized by the agent dynamic model (single integrator, double integrator, and mechanical dynamics) and by the type of formation problem (formation acquisition, formation manoeuvring, and target interception). The book presents the material in ascending level of difficulty and in a self-contained manner; thus, facilitating reader understanding. Key features: Uses the concept of graph rigidity as the basis for describing the multi-agent formation geometry and solving formation control problems. Considers different agent models and formation control problems. Control designs throughout the book progressively build upon each other. Provides a primer on rigid graph theory. Combines theory, computer simulations, and experimental results. Formation Control of Multi-Agent Systems: A Graph Rigidity Approach is targeted at researchers and graduate students in the areas of control systems and robotics. Prerequisite knowledge includes linear algebra, matrix theory, control systems, and nonlinear systems.
Новинка

14641.09 руб. или Купить в рассрочку!

Learn how to effectively interpret, select and optimize reactors for complex reactive systems, using Attainable Region theory Teaches how to effectively interpret, select and optimize reactors for complex reactive systems, using Attainable Region (AR) theory Written by co-founders and experienced practitioners of the theory Covers both the fundamentals of AR theory for readers new to the field, as we all as advanced AR topics for more advanced practitioners for understanding and improving realistic reactor systems Includes over 200 illustrations and 70 worked examples explaining how AR theory can be applied to complex reactor networks, making it ideal for instructors and self-study Interactive software tools and examples written for the book help to demonstrate the concepts and encourage exploration of the ideas
Новинка

2939 руб. или Купить в рассрочку!

This book is an introduction to GIS (Generalized Interval Systems) theory that includes the major results of pitch-class theory. It provides mathematicians with applications of group theory to music and music theorists with the essential connections betw
Новинка

3364 руб. или Купить в рассрочку!

The author gives his contribution to the solution of important problems related to the setting of an organization theory of complex systems and shows the applications resulting from it in important fields of knowledge, such as biological, the psychological and sociological. He shows how traditional concepts of science are upset. In particular, certain results of Clausius in thermodynamics and of Boltzmann in statistical physics, the formulation of the problem of the order formation in isolated systems, the theory of the galaxies formation, certain aspects of the theory of evolution, the organization of the immune system, then important aspects of psychic and social systems.
Новинка

11859.47 руб. или Купить в рассрочку!

Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: Presents new developments and how they relate to established control systems knowledge. Demonstrates the theory through simulation examples and models. Covers two-party and multi-party game theory and guidance. Accompanied by a website hosting MATLAB® code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.
Новинка

11149.28 руб. или Купить в рассрочку!

A comprehensive review of the state of the art in the control of multi-agent systems theory and applications The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems. Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice – illustrated within the context of highly-realistic scenarios of high-level missions – without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control. Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.
Новинка

750 руб. или Купить в рассрочку!

This book on stability theory and robustness will interest researchers and advanced graduate students in the area of feedback control engineering, circuits, and systems. It will also appeal to mathematicians who are involved in applications of functional analysis to engineering problems.The book provides a methodology for the rigorous treatment of such inherently feedback aspects of dynamical system design as robustness and sensitivity, just as many researchers are beginning to realize that this type of methodology is mandatory if modern systems theory is to be used to design complicated multivariable and large-scale systems. The main objective of the book is to provide a clear mathematical formulation of the issues that arise in designing feedback systems that are robust against the destabilizing effects of unknown-but-bounded uncertainty in component dynamics. It is the first study to identify formal methods for the quantitative analysis of multiloop feedback system robustness.The view that is presents of nonlinear, multiloop feedback system stability theory is unique, lucid, and conceptually appealing. Lyapunov and input-output stability theories are unified in a new and simple geometrical perspective based on the topological separation of spaces. This perspective greatly facilitates visualization of the underlying conceptual issues in stability and robustness theory and serves to motivate specific results concerning the robustness of feedback systems.Potentially, this met...
Новинка

11261.83 руб. или Купить в рассрочку!

Formal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory). Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns. When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory.
Новинка

10136.36 руб. или Купить в рассрочку!

New for the third edition, chapters on: Complete Exercise of the SE Process, System Science and Analytics and The Value of Systems Engineering The book takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. This book is divided into three major parts: (1) Introduction, Overview and Basic Knowledge, (2) Design and Integration Topics, (3) Supplemental Topics. The first part provides an introduction to the issues associated with the engineering of a system. The second part covers the critical material required to understand the major elements needed in the engineering design of any system: requirements, architectures (functional, physical, and allocated), interfaces, and qualification. The final part reviews methods for data, process, and behavior modeling, decision analysis, system science and analytics, and the value of systems engineering. Chapter 1 has been rewritten to integrate the new chapters and updates were made throughout the original chapters. Provides an overview of modeling, modeling methods associated with SysML, and IDEF0 Includes a new Chapter 12 that provides a comprehensive review of the topics discussed in Chapters 6 through 11 via a simple system – an automated soda machine Features a new Chapter 15 that reviews General System Theory, systems science, natural systems, cybernetics, systems thinking, quantitative characterization of systems, system dynamics, constraint theory, and Fermi problems and guesstimation Includes a new Chapter 16 on the value of systems engineering with five primary value propositions: systems as a goal-seeking system, systems engineering as a communications interface, systems engineering to avert showstoppers, systems engineering to find and fix errors, and systems engineering as risk mitigation The Engineering Design of Systems: Models and Methods, Third Edition is designed to be an introductory reference for professionals as well as a textbook for senior undergraduate and graduate students in systems engineering.
Новинка

5464 руб. или Купить в рассрочку!

Master's Thesis from the year 2013 in the subject Economics - Monetary theory and policy, grade: 1,0, Berlin School of Economics and Law, course: International Finance, language: English, abstract: Due to the instability of current financial and monetary markets worldwide and the dysfunctions of current capitalism, this Master's thesis studies alternative monetary systems. The objective of this paper is to debate about historical as well as current alternative monetary systems and to evaluate their concept, theory and success.First of all, the theoretical approaches to the problems of monetary systems of Silvio Gesell, John Maynard Keynes and Irving Fisher will be analyzed. Furthermore, a critical acclaim will be subjected by discussing the advantages and disadvantages of these reforms. Finally, the theories of the three economists will be compared in order to define similarities and differences. In the second main part, this thesis aims out exploring alternative monetary systems which have been implemented into practice. In the course of this analysis two historical case studies as well as seven current ones will be described and evaluated. The historical alternative monetary systems are based on Gesell's approach and the current systems represent complementary currency systems. The aim of this evaluation is to identify if alternative monetary systems can offer an added value for the economy and society. In the last chapter, this paper also aims out exploring if ...
Новинка

11254.12 руб. или Купить в рассрочку!

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.
Новинка

13214.3 руб. или Купить в рассрочку!

Holographic Data Storage: From Theory to Practical Systems is a primer on the design and building of a holographic data storage system covering the physics, Servo, Data Channel, Recording Materials, and optics behind holographic storage, the requirements of a functioning system, and its integration into «real-life» systems. Later chapters highlight recent developments in holographic storage which have enabled readiness for commercial implementation and discuss the general outlook for the technology, including the transition from professional to consumer markets and the possibilities for mass reproduction.
Новинка

1264 руб. или Купить в рассрочку!

This book is a compilation of five papers published in two journals, Family Systems Forum and Family Systems: A Journal of Natural Systems Thinking in Psychiatry, between 2008 and 2013. These journals are dedicated to exploring the theory of the family developed by Dr. Murray Bowen (1913-1990). Bowen was one of the leaders in the emergence of family systems theory and therapy beginning in the 1950s. Bowen came to understand that much of human behavior is a product of the family unit, and has a function for the family unit. The papers in this volume explore how beliefs - worldviews, philosophies, values, goals, principles, although emerging in an individual brain, can be regarded as a product of the family unit, and have a function for the family unit. Case studies include Dietrich Bonhoeffer, Henry David Thoreau, Walter Inglis Anderson, Robert Lowell and Jean Stafford.
Новинка

8324.3 руб. или Купить в рассрочку!

Enables readers to apply process dynamics and control theory to solve bioprocess and drug delivery problems The control of biological and drug delivery systems is critical to the health of millions of people worldwide. As a result, researchers in systems biology and drug delivery rely on process dynamics and control theory to build our knowledge of cell behavior and to develop more effective therapeutics, controlled release devices, and drug administration protocols to manage disease. Written by a leading expert and educator in the field, this text helps readers develop a deep understanding of process dynamics and control theory in order to analyze and solve a broad range of problems in bioprocess and drug delivery systems. For example, readers will learn how stability criteria can be used to gain new insights into the regulation of biological pathways and lung mechanics. They'll also learn how the concept of a time constant is used to capture the dynamics of diffusive processes. Readers will also master such topics as external disturbances, transfer functions, and input/output models with the support of the author's clear explanations, as well as: Detailed examples from the biological sciences and novel drug delivery technologies 160 end-of-chapter problems with step-by-step solutions Demonstrations of how computational software such as MATLAB and Mathematica solve complex drug delivery problems Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering is written primarily for undergraduate chemical and biomedical engineering students; however, it is also recommended for students and researchers in pharmaceutical engineering, process control, and systems biology. All readers will gain a new perspective on process dynamics and control theory that will enable them to develop new and better technologies and therapeutics to treat human disease.
Новинка

9978.65 руб. или Купить в рассрочку!

This book provides an introduction, discussion, and formal-based modelling of trust theory and its applications in agent-based systems This book gives an accessible explanation of the importance of trust in human interaction and, in general, in autonomous cognitive agents including autonomous technologies. The authors explain the concepts of trust, and describe a principled, general theory of trust grounded on cognitive, cultural, institutional, technical, and normative solutions. This provides a strong base for the author’s discussion of role of trust in agent-based systems supporting human-computer interaction and distributed and virtual organizations or markets (multi-agent systems). Key Features: Provides an accessible introduction to trust, and its importance and applications in agent-based systems Proposes a principled, general theory of trust grounding on cognitive, cultural, institutional, technical, and normative solutions. Offers a clear, intuitive approach, and systematic integration of relevant issues Explains the dynamics of trust, and the relationship between trust and security Offers operational definitions and models directly applicable both in technical and experimental domains Includes a critical examination of trust models in economics, philosophy, psychology, sociology, and AI This book will be a valuable reference for researchers and advanced students focused on information and communication technologies (computer science, artificial intelligence, organizational sciences, and knowledge management etc.), as well as Web-site and robotics designers, and for scholars working on human, social, and cultural aspects of technology. Professionals of ecommerce systems and peer-to-peer systems will also find this text of interest.
Новинка

2139 руб. или Купить в рассрочку!

The present book is the first monograph ever with a central focus on the proof theory of paraconsistent logics in the vicinity of the four-valued, constructive paraconsistent logic N4 by David Nelson. The volume brings together a number of papers the authors have written separately or jointly on various systems of inconsistency-tolerant logic. The material covers the structural proof theory of • N4, • its fragments, including first-degree entailment logic, • related logics, such as trilattice logics, connexive systems, systems of symmetric and dual paraconsistent logic, and variations of bi-intuitionistic logic,• paraconsistent temporal logics, • substructural subsystems of N4, such as paraconsistent intuitionistic linear logics, paraconsistent logics based on involutive quantales, and paraconsistent Lambek logics.Although the proof-theory of N4 and N4-related logics is the central theme of the present monograph, models and model-theoretic semantics also play an important role in the presentation. The relational, Kripke-style models that are dealt with provide a motivating and intuitively appealing insight into the logics with respect to which they are shown to be sound and complete. Nevertheless, the emphasis is on Gentzen-style proof systems -in particular sequent calculi of a standard and less standard kind- for paraconsistent logics, and cut-elimination and its consequences are a central topic throughout. A unifying element of the presentation is the repeated application ...
Новинка

11633.66 руб. или Купить в рассрочку!

Exact analytical solutions to periodic motions in nonlinear dynamical systems are almost not possible. Since the 18th century, one has extensively used techniques such as perturbation methods to obtain approximate analytical solutions of periodic motions in nonlinear systems. However, the perturbation methods cannot provide the enough accuracy of analytical solutions of periodic motions in nonlinear dynamical systems. So the bifurcation trees of periodic motions to chaos cannot be achieved analytically. The author has developed an analytical technique that is more effective to achieve periodic motions and corresponding bifurcation trees to chaos analytically. Toward Analytical Chaos in Nonlinear Systems systematically presents a new approach to analytically determine periodic flows to chaos or quasi-periodic flows in nonlinear dynamical systems with/without time-delay. It covers the mathematical theory and includes two examples of nonlinear systems with/without time-delay in engineering and physics. From the analytical solutions, the routes from periodic motions to chaos are developed analytically rather than the incomplete numerical routes to chaos. The analytical techniques presented will provide a better understanding of regularity and complexity of periodic motions and chaos in nonlinear dynamical systems. Key features: Presents the mathematical theory of analytical solutions of periodic flows to chaos or quasieriodic flows in nonlinear dynamical systems Covers nonlinear dynamical systems and nonlinear vibration systems Presents accurate, analytical solutions of stable and unstable periodic flows for popular nonlinear systems Includes two complete sample systems Discusses time-delayed, nonlinear systems and time-delayed, nonlinear vibrational systems Includes real world examples Toward Analytical Chaos in Nonlinear Systems is a comprehensive reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Новинка

12604.62 руб. или Купить в рассрочку!

A comprehensive review of the theory and practice for designing, operating, and optimizing electric distribution systems, revised and updated Now in its second edition, Electric Distribution Systems has been revised and updated and continues to provide a two-tiered approach for designing, installing, and managing effective and efficient electric distribution systems. With an emphasis on both the practical and theoretical approaches, the text is a guide to the underlying theory and concepts and provides a resource for applying that knowledge to problem solving. The authors—noted experts in the field—explain the analytical tools and techniques essential for designing and operating electric distribution systems. In addition, the authors reinforce the theories and practical information presented with real-world examples as well as hundreds of clear illustrations and photos. This essential resource contains the information needed to design electric distribution systems that meet the requirements of specific loads, cities, and zones. The authors also show how to recognize and quickly respond to problems that may occur during system operations, as well as revealing how to improve the performance of electric distribution systems with effective system automation and monitoring. This updated edition: • Contains new information about recent developments in the field particularly in regard to renewable energy generation • Clarifies the perspective of various aspects relating to protection schemes and accompanying equipment • Includes illustrative descriptions of a variety of distributed energy sources and their integration with distribution systems • Explains the intermittent nature of renewable energy sources, various types of energy storage systems and the role they play to improve power quality, stability, and reliability Written for engineers in electric utilities, regulators, and consultants working with electric distribution systems planning and projects, the second edition of Electric Distribution Systems offers an updated text to both the theoretical underpinnings and practical applications of electrical distribution systems.
Новинка

13138.8 руб. или Купить в рассрочку!

This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.
Новинка

8634.07 руб. или Купить в рассрочку!

A comprehensive reference to renewable energy technologies with a focus on power generation and integration into power systems This book addresses the generation of energy (primarily electrical) through various renewable sources. It discusses solar and wind power—two major resources that are now in use in small as well as large-scale power production—and their requirements for effectively using advanced control techniques.In addition, the book looks at theintegration of renewable energy in the power grid and its ability to work in a micro grid. Operation and Control of Renewable Energy Systems describes the numerous types of renewable energy sources available and the basic principles involving energy conversion, including the theory of fluid mechanics and the laws of thermodynamics. Chapter coverage includes the theory of power electronics and various electric power generators, grid scale energy storage systems, photovoltaic power generation, solar thermal energy conversion technology, horizontal and vertical wind turbines for power generation, and more. Covers integration into power systems with an emphasis on microgrids Introduces a wide range of subjects related to renewable energy systems, including energy storage, microgrids, and battery technologies Includes tutorial materials such as up-to-date references for wind energy, grid connection, and power electronics—plus worked examples and solutions Operation and Control of Renewable Energy Systems is the perfect introduction to renewable energy technologies for undergraduate and graduate students and can also be very useful to practicing engineers.
Новинка

11704.29 руб. или Купить в рассрочку!

With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.
Новинка

9129.13 руб. или Купить в рассрочку!

A unique approach to the study of geothermal energy systems This book takes a unique, holistic approach to the interdisciplinary study of geothermal energy systems, combining low, medium, and high temperature applications into a logical order. The emphasis is on the concept that all geothermal projects contain common elements of a «thermal energy reservoir» that must be properly designed and managed. The book is organized into four sections that examine geothermal systems: energy utilization from resource and site characterization; energy harnessing; energy conversion (heat pumps, direct uses, and heat engines); and energy distribution and uses. Examples are provided to highlight fundamental concepts, in addition to more complex system design and simulation. Key features: Companion website containing software tools for application of fundamental principles and solutions to real-world problems. Balance of theory, fundamental principles, and practical application. Interdisciplinary treatment of the subject matter. Geothermal Heat Pump & Heat Engine Systems: Theory and Practice is a unique textbook for Energy Engineering and Mechanical Engineering students as well as practicing engineers who are involved with low-enthalpy geothermal energy systems.
Новинка

12154.45 руб. или Купить в рассрочку!

Wireless Information and Power Transfer offers an authoritative and comprehensive guide to the theory, models, techniques, implementation and application of wireless information and power transfer (WIPT) in energy-constrained wireless communication networks. With contributions from an international panel of experts, this important resource covers the various aspects of WIPT systems such as, system modeling, physical layer techniques, resource allocation and performance analysis. The contributors also explore targeted research problems typically encountered when designing WIPT systems.
Новинка

8699.44 руб. или Купить в рассрочку!

Most books in reliability theory are dealing with a description of component and system states as binary: functioning or failed. However, many systems are composed of multi-state components with different performance levels and several failure modes. There is a great need in a series of applications to have a more refined description of these states, for instance, the amount of power generated by an electrical power generation system or the amount of gas that can be delivered through an offshore gas pipeline network. This book provides a descriptive account of various types of multistate system, bound-for multistate systems, probabilistic modeling of monitoring and maintenance of multistate systems with components along with examples of applications. Key Features: Looks at modern multistate reliability theory with applications covering a refined description of components and system states. Presents new research, such as Bayesian assessment of system availabilities and measures of component importance. Complements the methodological description with two substantial case studies. Reliability engineers and students involved in the field of reliability, applied mathematics and probability theory will benefit from this book.
Новинка

10511.04 руб. или Купить в рассрочку!

An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.
Новинка

4501.17 руб. или Купить в рассрочку!

Provides a self-contained account on applications of electromagnetic reciprocity theorems to multiport antenna systems The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems. In addition, the text: Presents basic prerequisites including the definition of the notation, integral transformations, and EM reciprocity theorems in their general form Explores multiport antenna forward-scattering theorem, multiport antenna matching theorem and uniqueness theorem Supplements each chapter with a solved illustrative example Electromagnetic Reciprocity in Antenna Theory is an excellent text for EMC and antenna researchers and students of the subject as well.
Новинка

9985.34 руб. или Купить в рассрочку!

Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems. The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open. This book is dedicated mainly to hybrid systems with constraints; taking constraints into account in a dynamic system description has always been a critical issue in control. New tools are provided here for stability analysis and control design for hybrid systems with operating constraints and performance specifications. Contents 1. Positive Systems: Discretization with Positivity and Constraints, Patrizio Colaneri, Marcello Farina, Stephen Kirkland, Riccardo Scattolini and Robert Shorten. 2. Advanced Lyapunov Functions for Lur’e Systems, Carlos A. Gonzaga, Marc Jungers and Jamal Daafouz. 3. Stability of Switched DAEs, Stephan Trenn. 4. Stabilization of Persistently Excited Linear Systems, Yacine Chitour, Guilherme Mazanti and Mario Sigalotti. 5. Hybrid Coordination of Flow Networks, Claudio De Persis, Paolo Frasca. 6. Control of Hybrid Systems: An Overview of Recent Advances, Ricardo G. Sanfelice. 7. Exponential Stability for Hybrid Systems with Saturations, Mirko Fiacchini, Sophie Tarbouriech, Christophe Prieur. 8. Reference Mirroring for Control with Impacts, Fulvio Forni, Andrew R. Teel, Luca Zaccarian. About the Authors Jamal Daafouz is an expert in the area of switched and polytopic systems and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He serves as an Associate Editor for the key journal IEEE TAC and is a member of the Editorial Board of the IEEE CSS society. Sophie Tarbouriech is an expert in the area of nonlinear systems with constraints and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.) and books. She is a member of the Editorial Board of the IEEE CSS society and has also served as an Associate Editor for the key journal IEEE TAC. Mario Sigalotti is an expert in applied mathematics and switched systems and has published several results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He heads the INRIA team GECO and is a member of the IFAC Technical Committee on Distributed Parameter Systems.
Новинка

1722 руб. или Купить в рассрочку!

Volume 1, From Brownian Motion to Renormalization and Lattice Gauge Theory (Cambridge Monographs on Mathematical Physics). A comprehensive and timely survey of the application of the methods of quantum field theory to statistical physics, a very active and fruitful area of modern research, is provided in two volumes. The first volume provides a pedagogical introduction to the subject, discussing Brownian motion, its anticommutative counterpart in the guise of Onsager's solution to the two-dimensional Ising model, the mean field or Landau approximation, scaling ideas exemplified by the Kosterlitz-Thouless theory for the XY transition, the continuous renormalization group applied to the standard phi-to-the-fourth theory (the simplest typical case) and lattice gauge theory as a pathway to the understanding of quark confinement in quantum chromodynamics. Volume 2, Strong Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems (Cambridge Monographs on Mathematical Physics). The second volume covers diverse topics, including strong coupling expansions and their analysis, Monte Carlo simulations, two-dimensional conformal field theory, and simple disordered systems. The book concludes with a chapter on random geometry and the Polyakov model of random surfaces, which illustrates the relations between string theory and statistical physics.
Новинка

8258.67 руб. или Купить в рассрочку!

Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.
Новинка

10428.82 руб. или Купить в рассрочку!

The book presents some key mathematical tools for the performance analysis of communication networks and computer systems. Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service. This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples illustrate their practical interest.
Новинка

10060.85 руб. или Купить в рассрочку!

The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Новинка

7799.11 руб. или Купить в рассрочку!

This is the first book primarily about the satellite payload of satellite communications systems. It represents a unique combination of practical systems engineering and communications theory. It tells about the satellites in geostationary and low-earth orbits today, both the so-called bent-pipe payloads and the processing payloads. The on-orbit environment, mitigated by the spacecraft bus, is described. The payload units (e.g. antennas and amplifiers), as well as payload-integration elements (e.g. waveguide and switches) are discussed in regard to how they work, what they do to the signal, their technology, environment sensitivity, and specifications. At a higher level are discussions on the payload as an entity: architecture including redundancy; specifications–what they mean, how they relate to unit specifications, and how to verify; and specification-compliance analysis (“budgets”) with uncertainty. Aspects of probability theory handy for calculating and using uncertainty and variation are presented. The highest-level discussions, on the end-to-end communications system, start with a practical introduction to physical-layer communications theory. Atmospheric effects and interference on the communications link are described. A chapter gives an example of optimizing a multibeam payload via probabilistic analysis. Finally, practical tips on system simulation and emulation are provided. The carrier frequencies treated are 1 GHz and above. Familiarity with Fourier analysis will enhance understanding of some topics. References are provided throughout the book for readers who want to dig deeper. Payload systems engineers, payload proposal writers, satellite-communications systems designers and analysts, and satellite customers will find that the book cuts their learning time. Spacecraft-bus systems engineers, payload unit engineers, and spacecraft operators will gain insight into the overall system. Students in systems engineering, microwave engineering, communications theory, probability theory, and communications simulation and modelling will find examples to supplement theoretical texts.
Новинка

4014 руб. или Купить в рассрочку!

This book touches on International Relations Theory, International Organizations, The Study of the Factors of Peace, Foundations of Peace, International Political Economy, Comparative Political Systems, International Law, International Political Systems, Strategic Intelligence, Intelligence Operations and Reports, Counterintelligence and HUMINT Operations, Criminal Intelligence Analysis, Analytics for Intelligence Analysis and other areas. This is a primer for International Affairs and Intelligence Studies.
Новинка

10136.36 руб. или Купить в рассрочку!

Gets you quickly up to speed with the theoretical and practical aspects of free space optical systems engineering design and analysis One of today's fastest growing system design and analysis disciplines is free space optical systems engineering for communications and remote sensing applications. It is concerned with creating a light signal with certain characteristics, how this signal is affected and changed by the medium it traverses, how these effects can be mitigated both pre- and post-detection, and if after detection, it can be differentiated from noise under a certain standard, e.g., receiver operating characteristic. Free space optical systems engineering is a complex process to design against and analyze. While there are several good introductory texts devoted to key aspects of optics—such as lens design, lasers, detectors, fiber and free space, optical communications, and remote sensing—until now, there were none offering comprehensive coverage of the basics needed for optical systems engineering. If you're an upper-division undergraduate, or first-year graduate student, looking to acquire a practical understanding of electro-optical engineering basics, this book is intended for you. Topics and tools are covered that will prepare you for graduate research and engineering in either an academic or commercial environment. If you are an engineer or scientist considering making the move into the opportunity rich field of optics, this all-in-one guide brings you up to speed with everything you need to know to hit the ground running, leveraging your experience and expertise acquired previously in alternate fields. Following an overview of the mathematical fundamentals, this book provides a concise, yet thorough coverage of, among other crucial topics: Maxwell Equations, Geometrical Optics, Fourier Optics, Partial Coherence theory Linear algebra, Basic probability theory, Statistics, Detection and Estimation theory, Replacement Model detection theory, LADAR/LIDAR detection theory, optical communications theory Critical aspects of atmospheric propagation in real environments, including commonly used models for characterizing beam, and spherical and plane wave propagation through free space, turbulent and particulate channels Lasers, blackbodies/graybodies sources and photodetectors (e.g., PIN, ADP, PMT) and their inherent internal noise sources The book provides clear, detailed discussions of the basics for free space optical systems design and analysis, along with a wealth of worked examples and practice problems—found throughout the book and on a companion website. Their intent is to help you test and hone your skill set and assess your comprehension of this important area. Free Space Optical Systems Engineering is an indispensable introduction for students and professionals alike.
Новинка

10436.24 руб. или Купить в рассрочку!

A comprehensive presentation of the video communication techniques and systems, this book examines 4G wireless systems which are set to revolutionise ubiquitous multimedia communication.4G Wireless Video Communications covers the fundamental theory and looks at systems’ descriptions with a focus on digital video. It addresses the key topics associated with multimedia communication on 4G networks, including advanced video coding standards, error resilience and error concealment techniques, as well as advanced content-analysis and adaptation techniques for video communications, cross-layer design and optimization frameworks and methods. It also provides a high-level overview of the digital video compression standard MPEG-4 AVC/H.264 that is expected to play a key role in 4G networks. Material is presented logically allowing readers to turn directly to specific points of interest. The first half of the book covers fundamental theory and systems, while the second half moves onto advanced techniques and applications. This book is a timely reflection of the latest advances in video communications for 4G wireless systems. One of the first books to study the latest video communications developments for emerging 4G wireless systems Considers challenges and techniques in video delivery over 4G wireless systems Examines system architecture, key techniques and related standards of advanced wireless multimedia applications Written from both the perspective of industry and academia
Новинка

13955.11 руб. или Купить в рассрочку!

The emergence of social networks, OpenCourseWare, Massive Open Online Courses, informal remote learning and connectivist approaches to learning has made the analysis and evaluation of Digital Learning Environments more complex. Modeling these complex systems makes it possible to transcribe the phenomena observed and facilitates the study of these processes with the aid of specific tools. Once this essential step is taken, it then becomes possible to develop plausible scenarios from the observation of emerging phenomena and dominant trends. This book highlights the contribution of complex systems theory in the study of next generation Digital Learning Environments. It describes a realistic approach and proposes a range of effective management tools to achieve it.
Новинка

9153.35 руб. или Купить в рассрочку!

Practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics Engineers in the telecommunications industry must be able to quantify system reliability and availability metrics for use in service level agreements, system design decisions, and daily operations. Increasing system complexity and software dependence require new, more sophisticated tools for system modeling and metric calculation than those available in the current literature. Telecommunications System Reliability Engineering, Theory, and Practice provides a background in reliability engineering theory as well as detailed sections discussing applications to fiber optic networks (earth station and space segment), microwave networks (long-haul, cellular backhaul and mobile wireless), satellite networks (teleport and VSAT), power systems (generators, commercial power and battery systems), facilities management, and software/firmware. Programming techniques and examples for simulation of the approaches presented are discussed throughout the book. This powerful resource: Acts as a comprehensive reference and textbook for analysis and design of highly reliable and available telecommunications systems Bridges the fields of system reliability theory, telecommunications system engineering, and computer programming Translates abstract reliability theory concepts into practical tools and techniques for technical managers, engineers and students Provides telecommunication engineers with a holistic understanding of system reliability theory, telecommunications system engineering, and reliability/risk analysis Telecommunications System Reliability Engineering, Theory, and Practice is a must-have guide for telecommunications engineers or engineering students planning to work in the field of telecommunications Telecommunications System Reliability Engineering, Theory, and Practice is a must-have guide for telecommunications engineers or engineering students planning to work in the field of telecommunications.
Новинка

6973.8 руб. или Купить в рассрочку!

This book is a physical chemistry textbook that presents the essentials of physical chemistry as a logical sequence from its most modest beginning to contemporary research topics. Many books currently on the market focus on the problem sets with a cursory treatment of the conceptual background and theoretical material, whereas this book is concerned only with the conceptual development of the subject. Comprised of 19 chapters, the book will address ideal gas laws, real gases, the thermodynamics of simple systems, thermochemistry, entropy and the second law, the Gibbs free energy, equilibrium, statistical approaches to thermodynamics, the phase rule, chemical kinetics, liquids and solids, solution chemistry, conductivity, electrochemical cells, atomic theory, wave mechanics of simple systems, molecular orbital theory, experimental determination of molecular structure, and photochemistry and the theory of chemical kinetics.
Новинка

8634.07 руб. или Купить в рассрочку!

A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Новинка

4389 руб. или Купить в рассрочку!

Political scientists have long classified systems of government as parliamentary or presidential, two-party or multiparty, and so on. But such distinctions often fail to provide useful insights. For example, how are we to compare the United States, a presidential bicameral regime with two weak parties, to Denmark, a parliamentary unicameral regime with many strong parties? Veto Players advances an important, new understanding of how governments are structured. The real distinctions between political systems, contends George Tsebelis, are to be found in the extent to which they afford political actors veto power over policy choices. Drawing richly on game theory, he develops a scheme by which governments can thus be classified. He shows why an increase in the number of "veto players," or an increase in their ideological distance from each other, increases policy stability, impeding significant departures from the status quo. Policy stability affects a series of other key characteristics of polities, argues the author. For example, it leads to high judicial and bureaucratic independence, as well as high government instability (in parliamentary systems). The propositions derived from the theoretical framework Tsebelis develops in the first part of the book are tested in the second part with various data sets from advanced industrialized countries, as well as analysis of legislation in the European Union. Representing the first consistent and consequential theory of compa...
Новинка

11036.73 руб. или Купить в рассрочку!

Decision Making in Systems Engineering and Management is a comprehensive textbook that provides a logical process and analytical techniques for fact-based decision making for the most challenging systems problems. Grounded in systems thinking and based on sound systems engineering principles, the systems decisions process (SDP) leverages multiple objective decision analysis, multiple attribute value theory, and value-focused thinking to define the problem, measure stakeholder value, design creative solutions, explore the decision trade off space in the presence of uncertainty, and structure successful solution implementation. In addition to classical systems engineering problems, this approach has been successfully applied to a wide range of challenges including personnel recruiting, retention, and management; strategic policy analysis; facilities design and management; resource allocation; information assurance; security systems design; and other settings whose structure can be conceptualized as a system.
Новинка

10098.6 руб. или Купить в рассрочку!

A comprehensive review of state-of-the-art CCHP modeling, optimization, and operation theory and practice This book was written by an international author team at the forefront of combined cooling, heating, and power (CCHP) systems R&D. It offers systematic coverage of state-of-the-art mathematical modeling, structure optimization, and CCHP system operation, supplemented with numerous illustrative case studies and examples. CCHP systems are an exciting emerging energy technology offering significant economic and environmental benefits. Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a timely response to ongoing efforts to maximize the efficiency of that technology. It begins with a survey of CCHP systems from the technological and societal perspectives, offering readers a broad and stimulating overview of the field. It then digs down into topics crucial for optimal CCHP operation. Discussions of each topic are carefully structured, walking readers from introduction and background to technical details. A set of new methodologies for the modeling, optimization and control of CCHP systems are presented within a unified framework. And the authors demonstrate innovative solutions to a variety of CCHP systems problems using new approaches to optimal power flow, load forecasting, and system operation design. Provides a comprehensive review of state-of-the-art of CCHP system development Presents new methodologies for mathematical modeling, optimization, and advanced control Combines theoretical rigor with real-world application perspectives Features numerous examples demonstrating an array of new design strategies Reflects the combined experience of veteran researchers in the field whose contributions are well recognized within the energy community Offers excellent background reading for students currently enrolled in the growing number of courses on energy systems at universities worldwide Timely, authoritative, and offering a balanced presentation of theory and practice, Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a valuable resource forresearchers, design practitioners, and graduate students in the areas of control theory, energy management, and energy systems design.
Новинка

14405.28 руб. или Купить в рассрочку!

TRANSFER MATRIX METHOD FOR MULTIBODY SYSTEMS: THEORY AND APPLICATIONS Xiaoting Rui, Guoping Wang and Jianshu Zhang – Nanjing University of Science and Technology, China Featuring a new method of multibody system dynamics, this book introduces the transfer matrix method systematically for the first time. First developed by the lead author and his research team, this method has found numerous engineering and technological applications. Readers are first introduced to fundamental concepts like the body dynamics equation, augmented operator and augmented eigenvector before going in depth into precision analysis and computations of eigenvalue problems as well as dynamic responses. The book also covers a combination of mixed methods and practical applications in multiple rocket launch systems, self-propelled artillery as well as launch dynamics of on-ship weaponry. • Comprehensively introduces a new method of analyzing multibody dynamics for engineers • Provides a logical development of the transfer matrix method as applied to the dynamics of multibody systems that consist of interconnected bodies • Features varied applications in weaponry, aeronautics, astronautics, vehicles and robotics Written by an internationally renowned author and research team with many years' experience in multibody systems Transfer Matrix Method of Multibody System and Its Applications is an advanced level text for researchers and engineers in mechanical system dynamics. It is a comprehensive reference for advanced students and researchers in the related fields of aerospace, vehicle, robotics and weaponry engineering.
Новинка

8914 руб. или Купить в рассрочку!

One of the main problems of quantitative study of proofs is speed-up phenomenon, that is a situation, where two systems are compared such that some theorems have much shorter proof in one of them. For the first time such problem on the proof steps was considered for arithmetical systems by Gödel. Now many results in this field are well-known. In all of them by comparison of two systems for every recursive function φ can be pointed one formula or infinite set of formula, which has φ speed-up. We introduce the common notion of proof complexity (by analogy to Blum computational complexity), the notion of ordinary theory and formulate some conditions for any pair of theory, which are enough for possibility of the most generalized (Rabin style) speed-up, i.e. for arbitrary general recursive function φ there exists n0 such that for every n>n0 there is provable in both theories formula βφn such that its proof complexity in "stronger" theory is no more than n and in the "weaker" theory is greater than φ(n). Many pair systems with above conditions are considered as well as the constructive description of "hard" provable formulas for some pair systems is given.
Новинка

10803.96 руб. или Купить в рассрочку!

This book is a general presentation of complex systems, examined from the point of view of management. There is no standard formula to govern such systems, nor to effectively understand and respond to them. The interdisciplinary theory of self-organization is teeming with examples of living systems that can reorganize at a higher level of complexity when confronted with an external challenge of a certain magnitude. Modern businesses, considered as complex systems, ideally know how to flexibly and resiliently adapt to their environment, and also how to prepare for change via self-organization. Understanding sources of potential crisis is essential for leaders, though not all crises are necessarily bad news, as creative firms know how to respond to challenges through innovation: new products and markets, organizational learning for collective intelligence, and more.
Новинка

2097.02 руб. или Купить в рассрочку!

This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.
Новинка

9985.34 руб. или Купить в рассрочку!

This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.
Новинка

9760.96 руб. или Купить в рассрочку!

Describes how to systematically implement various characteristic mode (CM) theories into designs of practical antenna systems This book examines both theoretical developments of characteristic modes (CMs) and practical developments of CM-based methodologies for a variety of critical antenna designs. The book is divided into six chapters. Chapter 1 provides an introduction and discusses the recent advances of the CM theory and its applications in antenna engineering. Chapter 2 describes the formulation of the characteristic mode theory for perfectly electrically conducting (PEC) bodies and discusses its numerical implementations. Chapter 3 presents the CM theory for PEC structures embedded in multilayered medium and its applications. Chapter 4 covers recent advances in CM theory for dielectric bodies and also their applications. Chapter 5 discusses the CM theory for N-port networks and its applications to the design of antenna arrays. Finally, Chapter 6 discusses the design of platform-integrated antenna systems using characteristic modes. This book features the following: Introduces characteristic mode theories for various electromagnetic structures including PEC bodies, structures in multilayered medium, dielectric bodies, and N-port networks Examines CM applications in electrically small antennas, microstrip patch antennas, dielectric resonator antennas, multiport antennas, antenna arrays, and platform mounted antenna systems Discusses numerical algorithms for the implementation of the characteristic mode theories in computer code Characteristic Modes: Theory and Applications in Antenna Engineering will help antenna researchers, engineers, and students find new solutions for their antenna design challenges.
Новинка

13950.73 руб. или Купить в рассрочку!

Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology. Key features: Presents a radically new approach to online parameter and state estimation. Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. Includes examples in a variety of physical applications with experimental results. Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.
Новинка

2052 руб. или Купить в рассрочку!

The Handbook of Normative Multiagent Systems presents a comprehensive overview of the state-of-the-art and trends in the research field of normative multiagent systems (NorMAS). The handbook provides a solid introduction to the essentials of the field for newcomers and a selection of advanced issues as a base for future research directions.Norms are widely used to represent ethical, legal, and interactive aspects of social systems. Normative multiagent systems provide a promising model for human and artificial agent coordination since they integrate norms and individual intelligence. Thus, in the NorMAS community we build upon computer science but also logic, legal theory, sociology, psychology, and cognitive science.The handbook is organised in four parts. The introduction part describes the foundations and the history of the field and adds a particular focus on the social sciences’ view on norms.The second part describes the major achievements the NorMAS research fi eld attained in the modelling of normative multiagent systems and the main challenges still open. Examples of these challenges include how to specify norms, verify systems of norms, model norm emergence and norm change, detect and subsequently manage norm violations, model organisations and institutions, and the use of agent-based simulation models to study these norm-related processes.Part C is concerned with the engineering of normative multiagent systems, more in particular interaction protocols to convey nor...
Новинка

14641.09 руб. или Купить в рассрочку!

The main aim of the book is to present new constructive methods of delay differential equation (DDE) theory and to give readers practical tools for analysis, control design and simulating of linear systems with delays. Referred to as “systems with delays” in this volume, this class of differential equations is also called delay differential equations (DDE), time-delay systems, hereditary systems, and functional differential equations. Delay differential equations are widely used for describing and modeling various processes and systems in different applied problems At present there are effective control and numerical methods and corresponding software for analysis and simulating different classes of ordinary differential equations (ODE) and partial differential equations (PDE). There are many applications for these types of equations, because of this progress, but there are not as many methodologies in systems with delays that are easily applicable for the engineer or applied mathematician. there are no methods of finding solutions in explicit forms, and there is an absence of generally available general-purpose software packages for simulating such systems. Systems with Delays fills this void and provides easily applicable methods for engineers, mathematicians, and scientists to work with delay differential equations in their operations and research. Gets you quickly up to speed with the theoretical and practical aspects of free space optical systems engineering design and analysis One of today's fastest growing system design and analysis disciplines is free space optical systems engineering for communications and remote sensing applications. It is concerned with creating a light signal with certain characteristics, how this signal is affected and changed by the medium it traverses, how these effects can be mitigated both pre- and post-detection, and if after detection, it can be differentiated from noise under a certain standard, e.g., receiver operating characteristic. Free space optical systems engineering is a complex process to design against and analyze. While there are several good introductory texts devoted to key aspects of optics—such as lens design, lasers, detectors, fiber and free space, optical communications, and remote sensing—until now, there were none offering comprehensive coverage of the basics needed for optical systems engineering. If you're an upper-division undergraduate, or first-year graduate student, looking to acquire a practical understanding of electro-optical engineering basics, this book is intended for you. Topics and tools are covered that will prepare you for graduate research and engineering in either an academic or commercial environment. If you are an engineer or scientist considering making the move into the opportunity rich field of optics, this all-in-one guide brings you up to speed with everything you need to know to hit the ground running, leveraging your experience and expertise acquired previously in alternate fields. Following an overview of the mathematical fundamentals, this book provides a concise, yet thorough coverage of, among other crucial topics: Maxwell Equations, Geometrical Optics, Fourier Optics, Partial Coherence theory Linear algebra, Basic probability theory, Statistics, Detection and Estimation theory, Replacement Model detection theory, LADAR/LIDAR detection theory, optical communications theory Critical aspects of atmospheric propagation in real environments, including commonly used models for characterizing beam, and spherical and plane wave propagation through free space, turbulent and particulate channels Lasers, blackbodies/graybodies sources and photodetectors (e.g., PIN, ADP, PMT) and their inherent internal noise sources The book provides clear, detailed discussions of the basics for free space optical systems design and analysis, along with a wealth of worked examples and practice problems—found throughout the book and on a companion website. Their intent is to help you test and hone your skill set and assess your comprehension of this important area. Free Space Optical Systems Engineering is an indispensable introduction for students and professionals alike.