:
Jonas Hall Mathematical Modeling. Applications with GeoGebra
ПОДРОБНЕЕ...
9373.54 руб.
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
:
Oliver Brand System-level Modeling of MEMS
ПОДРОБНЕЕ...
17023.2 руб.
System-level modeling of MEMS – microelectromechanical systems – comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
:
Roderick Melnik Mathematical and Computational Modeling. With Applications in Natural and Social Sciences, Engineering, and the Arts
ПОДРОБНЕЕ...
7495.27 руб.
Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.
:
Xin-She Yang Mathematical Modeling with Multidisciplinary Applications
ПОДРОБНЕЕ...
10273.54 руб.
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the book presents new and emerging topics in areas including finance and economics, theoretical and applied mathematics, engineering and machine learning, physics, chemistry, ecology, and social science. In addition, the book thoroughly summarizes widely used mathematical and numerical methods in mathematical modeling and features: Diverse topics such as partial differential equations (PDEs), fractional calculus, inverse problems by ordinary differential equations (ODEs), semigroups, decision theory, risk analysis, Bayesian estimation, nonlinear PDEs in financial engineering, perturbation analysis, and dynamic system modeling Case studies and real-world applications that are widely used for current mathematical modeling courses, such as the green house effect and Stokes flow estimation Comprehensive coverage of a wide range of contemporary topics, such as game theory, statistical models, and analytical solutions to numerical methods Examples, exercises with select solutions, and detailed references to the latest literature to solidify comprehensive learning New techniques and applications with balanced coverage of PDEs, discrete models, statistics, fractional calculus, and more Mathematical Modeling with Multidisciplinary Applications is an excellent book for courses on mathematical modeling and applied mathematics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for research scientists, mathematicians, and engineers who would like to develop further insights into essential mathematical tools.
:
Ismael Herrera Mathematical Modeling in Science and Engineering. An Axiomatic Approach
ПОДРОБНЕЕ...
6970.21 руб.
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
:
Jean-Michel Tanguy Environmental Hydraulics. Mathematical Models
ПОДРОБНЕЕ...
18358.69 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Jeffrey Barton T. Models for Life. An Introduction to Discrete Mathematical Modeling with Microsoft Office Excel
ПОДРОБНЕЕ...
9373.54 руб.
Features an authentic and engaging approach to mathematical modeling driven by real-world applications With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank The book is ideal for undergraduate non-mathematics majors enrolled in mathematics or quantitative reasoning courses such as introductory mathematical modeling, applications of mathematics, survey of mathematics, discrete mathematical modeling, and mathematics for liberal arts. The book is also an appropriate supplement and project source for honors and/or independent study courses in mathematical modeling and mathematical biology. Jeffrey T. Barton, PhD, is Professor of Mathematics in the Mathematics Department at Birmingham-Southern College. A member of the American Mathematical Society and Mathematical Association of America, his mathematical interests include approximation theory, analytic number theory, mathematical biology, mathematical modeling, and the history of mathematics.
:
Jean-Michel Tanguy Physical Processes and Measurement Devices. Environmental Hydraulics
ПОДРОБНЕЕ...
18358.69 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Jean-Michel Tanguy Environmental Hydraulics. Modeling Software
ПОДРОБНЕЕ...
14157.98 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Jean-Michel Tanguy Environmental Hydraulics. Modeling Software
ПОДРОБНЕЕ...
13648.01 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Laurence Belfiore A. Physical Properties of Macromolecules
ПОДРОБНЕЕ...
11902.04 руб.
Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand polymer science concepts and research methods, while also instructing how to analyze experimental data. Drawing on the author's own extensive research in physical properties of polymers as well as more traditional topics, this text offers detailed analysis of numerous problems in polymer science, including laboratory data and research results. Topics include: Solid-state dynamics of polymeric materials Glass transitions in amorphous polymers Semicrystalline polymers and melting transitions Viscoelastic behavior Relaxation processes Macromolecule-metal complexes Mechanical properties of linear and crosslinked polymers Filled with detailed graphs to help explain important quantitative trends, Physical Properties of Macromolecules teaches by example, ensuring comprehension of the subject as well as the methodology to implement theory, problem-solving techniques, and research results in practical situations. This resource serves as the ideal companion for government laboratories, industrial research scientists, engineers, and professionals in polymer science fields who are interested in fully grasping all aspects of physical polymer science.
:
J. Oden Tinsley An Introduction to Mathematical Modeling. A Course in Mechanics
ПОДРОБНЕЕ...
10268.42 руб.
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
:
David Goodson Z. Mathematical Methods for Physical and Analytical Chemistry
ПОДРОБНЕЕ...
9019.88 руб.
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton’s method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical knowledge they need to understand the analytical and physical chemistry professional literature.
:
Wiley Properties and Behavior of Polymers, 2 Volume Set
ПОДРОБНЕЕ...
42396.14 руб.
The book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from the Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.
:
Jean-Michel Tanguy Environmental Hydraulics. Numerical Methods
ПОДРОБНЕЕ...
17697.67 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Jean-Michel Tanguy Practical Applications in Engineering
ПОДРОБНЕЕ...
18358.69 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Jean-Michel Tanguy Environmental Hydraulics. Numerical Methods
ПОДРОБНЕЕ...
18358.69 руб.
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
:
Olivier Gallot-Lavallée Dielectric Materials and Electrostatics
ПОДРОБНЕЕ...
7569.98 руб.
An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties of liquids and solids are presented, in order to explain the phenomena of electrical degradation, dissipation and breakdown. Contents 1. Mathematical Examination of Dielectrics 2. Physical Examination of Dielectrics Appendix 1. List of Figures Appendix 2. List of Symbols Appendix 3. List of Useful Values Appendix 4. Reminder about Dielectric Spectroscopy Appendix 5. Reminder about Transitory Currents
:
Thierry Goudon Mathematics for Modeling and Scientific Computing
ПОДРОБНЕЕ...
10654.88 руб.
This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.
:
Victor Lyatkher M. Hydraulic Modeling
ПОДРОБНЕЕ...
14623.43 руб.
Water. Except for air, it is the most important ingredient to all life on Earth. It surrounds us every day. We are literally bathed in it, we cook our food with it, and we need a steady stream of it in our bodies every single day just to survive. But water, and the study of it, is one of the most important and unheralded branches of engineering, affecting every other aspect of engineering in almost every industry. We harness its power for energy, we inject massive blasts of it into the earth to extract oil, gas, and minerals, and we use it in nearly every single industrial application, including food processing, refining, manufacturing, and waste disposal, just to name a few. Hyraulic modeling is, essentially, the understanding and prediction of fluid flow and its applications in industrial, municipal, and environmental settings, whether in a creekbed, locked in the pores of rocks deep in the earth, or in the ocean. Mathematical models, which started out with mechanical pencils and drafting tables originally, have been increasingly relied upon over the last few decades, due to the invention, growth, and refinement of computers. Physical modeling, however, is still practiced in laboratories, and it is the intersection of physical and mathematical modeling of fluid flow that is most successful in creating models that are safer, less costly, and are better for the environment. Hydraulic Modeling introduces and explores this incredibly important science, from the most basic tenets to valuable real-world applications that are used in industry today. It is the only volume on the market to offer a thorough coverage of the subject without adding lots of useless fluff or inapplicable appendices. It is a must-have for any engineer, scientist, or student working with hydraulic modeling, as a daily reference or a textbook.
:
Thomas Mitchell M. Fault Zone Dynamic Processes. Evolution of Fault Properties During Seismic Rupture
ПОДРОБНЕЕ...
12745.17 руб.
Why do earthquakes happen? What properties control the dynamic rupture and what are the processes at play? Chapters in the present volume capture the current state of the art by displaying an overview of the existing knowledge on the physics of dynamic faulting and promote multidisciplinary contributions on the observational and experimental fault fabric and mechanics, the evolution of fault zone physical and chemical properties, dynamic rupture processes and physically, and observationally, consistent numerical modeling of fault zone during seismic rupture. This volume examines questions such as: What are the dynamics processes recorded in fault gouge? What can we learn on rupture dynamic from laboratory experiments? How on-fault and off-fault properties affect seismic ruptures? How do they evolve trough time? Insights from physically, and observationally, consistent numerical modeling Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture is a valuable contribution for Earth’s scientists, researchers and students interested in the earthquakes processes and properties of on-fault and off-fault zones. Its multidisciplinary content is relevant to a broad audience: structural geologist, experimentalists, rocks mechanicians, seismologist, geophysicists and modelers.
:
Paul Pukite Mathematical Geoenergy. Discovery, Depletion, and Renewal
ПОДРОБНЕЕ...
18665.32 руб.
A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requirements Illustrates model interpolation and extrapolation to fill out missing or indeterminate data Covers both stochastic and deterministic mathematical processes for historical analysis and prediction Emphasizes the importance of up-to-date data, accessed through the companion website Demonstrates the advantages of mathematical modeling over conventional heuristic and empirical approaches Accurately analyzes the past and predicts the future of geoenergy depletion and renewal using models derived from observed production data Intuitive mathematical models and readily available algorithms make Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal an insightful and invaluable resource for scientists and engineers using robust statistical and analytical tools applicable to oil discovery, reservoir sizing, dispersion, production models, reserve growth, and more.
:
Ronald Wrolstad E. Food Carbohydrate Chemistry
ПОДРОБНЕЕ...
7794.8 руб.
Not since «Sugar Chemistry» by Shallenberger and Birch (1975) has a text clearly presented and applied basic carbohydrate chemistry to the quality attributes and functional properties of foods. Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates. Structure and nomenclature of sugars and sugar derivatives are covered, focusing on those derivatives that exist naturally in foods or are used as food additives. Chemical reactions emphasize those that have an impact on food quality and occur under processing and storage conditions. Coverage includes: how chemical and physical properties of sugars and polysaccharides affect the functional properties of foods; taste properties and non-enzymic browning reactions; the nutritional roles of carbohydrates from a food chemist's perspective; basic principles, advantages, and limitations of selected carbohydrate analytical methods. An appendix includes descriptions of proven laboratory exercises and demonstrations. Applications are emphasized, and anecdotal examples and case studies are presented. Laboratory units, homework exercises, and lecture demonstrations are included in the appendix. In addition to a complete list of cited references, a listing of key references is included with brief annotations describing their important features. Students and professionals alike will benefit from this latest addition to the IFT Press book series. In Food Carbohydrate Chemistry, upper undergraduate and graduate students will find a clear explanation of how basic principles of carbohydrate chemistry can account for and predict functional properties such as sweetness, browning potential, and solubility properties. Professionals working in product development and technical sales will value Food Carbohydrate Chemistry as a needed resource to help them understand the functionality of carbohydrate ingredients. And persons in research and quality assurance will rely upon Food Carbohydrate Chemistry for understanding the principles of carbohydrate analytical methods and the physical and chemical properties of sugars and polysaccharides.
:
Limin Zhang Dam Failure Mechanisms and Risk Assessment
ПОДРОБНЕЕ...
13122.95 руб.
This book integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner • The first book that introduces the causes, processes and consequences of dam failures • Integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner • Emphasizes integrating theory and practice to better demonstrate the application of risk assessment and decision methodologies to real cases • Intends to formulate dam-breaching emergency management steps in a scientific structure
Страницы:
Features an authentic and engaging approach to mathematical modeling driven by real-world applications With a focus on mathematical models based on real and current data, Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® guides readers in the solution of relevant, practical problems by introducing both mathematical and Excel techniques. The book begins with a step-by-step introduction to discrete dynamical systems, which are mathematical models that describe how a quantity changes from one point in time to the next. Readers are taken through the process, language, and notation required for the construction of such models as well as their implementation in Excel. The book examines single-compartment models in contexts such as population growth, personal finance, and body weight and provides an introduction to more advanced, multi-compartment models via applications in many areas, including military combat, infectious disease epidemics, and ranking methods. Models for Life: An Introduction to Discrete Mathematical Modeling with Microsoft® Office Excel® also features: A modular organization that, after the first chapter, allows readers to explore chapters in any order Numerous practical examples and exercises that enable readers to personalize the presented models by using their own data Carefully selected real-world applications that motivate the mathematical material such as predicting blood alcohol concentration, ranking sports teams, and tracking credit card debt References throughout the book to disciplinary research on which the presented models and model parameters are based in order to provide authenticity and resources for further study Relevant Excel concepts with step-by-step guidance, including screenshots to help readers better understand the presented material Both mathematical and graphical techniques for understanding concepts such as equilibrium values, fixed points, disease endemicity, maximum sustainable yield, and a drug’s therapeutic window A companion website that includes the referenced Excel spreadsheets, select solutions to homework problems, and an instructor’s manual with solutions to all homework problems, project ideas, and a test bank The book is ideal for undergraduate non-mathematics majors enrolled in mathematics or quantitative reasoning courses such as introductory mathematical modeling, applications of mathematics, survey of mathematics, discrete mathematical modeling, and mathematics for liberal arts. The book is also an appropriate supplement and project source for honors and/or independent study courses in mathematical modeling and mathematical biology. Jeffrey T. Barton, PhD, is Professor of Mathematics in the Mathematics Department at Birmingham-Southern College. A member of the American Mathematical Society and Mathematical Association of America, his mathematical interests include approximation theory, analytic number theory, mathematical biology, mathematical modeling, and the history of mathematics.
Продажа mathematical modeling of physical properties for hexagonal binaries лучших цены всего мира
Посредством этого сайта магазина - каталога товаров Вы очень легко купите нужные Вам mathematical modeling of physical properties for hexagonal binaries у одного из проверенных интернет-магазинов. Определитесь с вашими предпочтениями, с лучшей ценой продукта. Прочитав рекомендации по продаже mathematical modeling of physical properties for hexagonal binaries легко выбрать производителя как превосходную и доступную фирму.
цена mathematical modeling of physical properties for hexagonal binaries
стоимость mathematical modeling of physical properties for hexagonal binaries
купить mathematical modeling of physical properties for hexagonal binaries
продажа mathematical modeling of physical properties for hexagonal binaries
заказать mathematical modeling of physical properties for hexagonal binaries
покупкаmathematical modeling of physical properties for hexagonal binaries