Новинка

10372.01 руб.

Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields and fluid flow and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physic kinetics, and plasmadynamics Integrates interlinking computational model and simulation techniques of aerodynamics and electromagnetics Combines classic plasma drift-diffusion theory and electron impact ionization modeling for electromagnetic-aerodynamic interactions Describes models of internal degrees of freedom for vibration relaxation and electron excitations
Новинка

5189 руб.

Книга "Problems in Nonlinear Diffusion. Lectures given at the 2nd 1985 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Montecatini Terme, Italy, June 10 - June 18, 1985".
Новинка

8139 руб.

When two phase coherent laser beams are crossed at an angle, the electric fields of the beams produce a sinusoidal interference pattern. Partial absorption of the electric fields in a colloidal sample creates a sinusoidal temperature field. The temperature gradient then causes production of concentration gradient in the sample, known as the Ludwig-Soret effect or thermal diffusion. Solutions to nonlinear partial differential equations that describe the effect show that shock waves analogous to fluid shock waves are produced. A mathematical relation between the shock speed and the density fraction of one component, analogous to the well-known Rankine-Hugoniot equations, is derived. Self-diffraction and imaging experiments show shock-like behavior in colloidal systems governed by the thermal diffusion.
Новинка

11139.52 руб.

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Новинка

9182.98 руб.

This book will provide insight into the principles and applications of nonlinear effects in fibers for students, researchers, and developers who have a basic understanding of electromagnetic theory under their belts. It will explore the physics, limitations, applications, and research results surrounding nonlinear effects in fiber optics. In addition to communications, optical fibers are already used in medical procedures, automobiles, and aircraft and are expected to have many other applications. This will expand the range of industry workers who will find a book of this type useful.
Новинка

5889 руб.

Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given.
Новинка

3167 руб.

A nonperturbative approach to QCD describing confinement and chiral symmetry breaking is discussed. It is based on the path integral representation of Green's function of quarks and leads to the QCD string theory. The effective actions for mesons and baryons in the external uniform static electromagnetic fields are obtained. The area law of the Wilson loop integral, the approximation of the Nambu - Goto straight-line string, and the asymmetric quark-diquark structure of nucleons are used to simplify the problem. The spin-orbit and spin-spin interactions of quarks are treated as a perturbation. Using the virial theorem we estimate the mean radii of hadrons in terms of the string tension and the Airy function zeros. On the basis of the perturbation theory in small external electromagnetic fields we derive the electromagnetic polarizabilities of nucleons.
Новинка

10755.4 руб.

Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, Human Exposure to Electromagnetic Fields provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors. The biophysical and biological effects of these fields on the human body are detailed and the exposure limits are recalled. The exposure assessment and the implementation of the appropriate regulation within companies are also covered. Technically and practically, this book is aimed at people with a scientific background, risk prevention actors, health physicians, especially occupational doctors, and equipment designers.
Новинка

21383.38 руб.

A comprehensive review of the field of materials that shield people and sensitive electronic devices from electromagnetic fields Advanced Materials for Electromagnetic Shielding offers a thorough review of the most recent advances in the processing and characterization of the electromagnetic shielding materials. In this groundbreaking book, the authors—noted experts in the field—discuss the fundamentals of shielding theory as well as the practice of electromagnetic field measuring techniques and systems. They also explore applications of shielding materials used as absorbers of electromagnetic radiation, or as magnetic shields and explore coverage of new advanced materials for EMI shielding in aerospace applications. In addition, the text contains methods of preparation and applicability of metal foams. This comprehensive text examines the influence of technology on the micro-and macrostructure of polymers enabling their use in screening technology, technologies of shielding materials based on textiles, and analyses of its effectiveness in screening. The book also details the method of producing nanowires and their applications in EM shielding. This important resource: Explores the burgeoning market of electromagnetic shielding materials as we create, depend upon, and are exposed to more electronic devices than ever Addresses the most comprehensive issues relating to electromagnetic fields Contains information on the manufacturing, characterization methods, and properties of materials used to protect against them Discusses the important characterization techniques compared with one another, thus allowing scientists to select the best approach to a problem Written for materials scientists, electrical and electronics engineers, physicists, and industrial researchers, Advanced Materials for Electromagnetic Shielding explores all aspects in the area of electromagnetic shielding materials and examines the current state-of-the-art and new challenges in this rapidly growing area.
Новинка

14750.41 руб.

A discussion of the fundamental changes that occur when dynamical systems from the fields of nonlinear optics, solids, hydrodynamics and biophysics are scaled down to nanosize. The authors are leading scientists in the field and each of their contributions provides a broader introduction to the specific area of research. In so doing, they include both the experimental and theoretical point of view, focusing especially on the effects on the nonlinear dynamical behavior of scaling, stochasticity and quantum mechanics. For everybody working on the synthesis and integration of nanoscopic devices who sooner or later will have to learn how to deal with nonlinear effects.
Новинка

14750.41 руб.

The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Lévy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance. Contents 1. Diffusion Phenomena and Models. 2. Probabilistic Models of Diffusion Processes. 3. Solving Partial Differential Equations of Second Order. 4. Problems in Finance. 5. Basic PDE in Finance. 6. Exotic and American Options Pricing Theory. 7. Hitting Times for Diffusion Processes and Stochastic Models in Insurance. 8. Numerical Methods. 9. Advanced Topics in Engineering: Nonlinear Models. 10. Lévy Processes. 11. Advanced Topics in Insurance: Copula Models and VaR Techniques. 12. Advanced Topics in Finance: Semi-Markov Models. 13. Monte Carlo Semi-Markov Simulation Methods. About the Authors Jacques Janssen is now Honorary Professor at the Solvay Business School (ULB) in Brussels, Belgium, having previously taught at EURIA (Euro-Institut d’Actuariat, University of West Brittany, Brest, France) and Télécom-Bretagne (Brest, France) as well as being a director of Jacan Insurance and Finance Services, a consultancy and training company. Oronzio Manca is Professor of thermal sciences at Seconda Università degli Studi di Napoli in Italy. He is currently Associate Editor of ASME Journal of Heat Transfer and Journal of Porous Media and a member of the editorial advisory boards for The Open Thermodynamics Journal, Advances in Mechanical Engineering, The Open Fuels & Energy Science Journal. Raimondo Manca is Professor of mathematical methods applied to economics, finance and actuarial science at University of Rome “La Sapienza” in Italy. He is associate editor for the journal Methodology and Computing in Applied Probability. His main research interests are multidimensional linear algebra, computational probability, application of stochastic processes to economics, finance and insurance and simulation models.
Новинка

11523.64 руб.

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Новинка

5939 руб.

Document from the year 2018 in the subject Engineering - Power Engineering, grade: 1, Jain University, language: English, abstract: Electromagnetic Theory plays an important role in modernizing human life and encompasses wide areas such as: generation, transmission, and distribution of electrical power, digital systems, satellite communications, signal processing, robotics, mechatronics, computer, control, artificial intelligence, and networks.A four year engineering curriculum normally contains various modules of electromagnetic field theory. However, some curricula do not have enough slots to accommodate the two modules. This book, is designed for undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors, and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flash over mechanism, transient phenomena, etc.This book is written in a simple way so that the students will find it easy to understand the electromagnetic field theory and its applications. Several worked out examples are included to enhance the understanding of electromagnetic field theories. Each chapter also includes several practice problems with answers given at the end of the book, which would facilitate students' understanding.
Новинка

11904.12 руб.

Exact analytical solutions to periodic motions in nonlinear dynamical systems are almost not possible. Since the 18th century, one has extensively used techniques such as perturbation methods to obtain approximate analytical solutions of periodic motions in nonlinear systems. However, the perturbation methods cannot provide the enough accuracy of analytical solutions of periodic motions in nonlinear dynamical systems. So the bifurcation trees of periodic motions to chaos cannot be achieved analytically. The author has developed an analytical technique that is more effective to achieve periodic motions and corresponding bifurcation trees to chaos analytically. Toward Analytical Chaos in Nonlinear Systems systematically presents a new approach to analytically determine periodic flows to chaos or quasi-periodic flows in nonlinear dynamical systems with/without time-delay. It covers the mathematical theory and includes two examples of nonlinear systems with/without time-delay in engineering and physics. From the analytical solutions, the routes from periodic motions to chaos are developed analytically rather than the incomplete numerical routes to chaos. The analytical techniques presented will provide a better understanding of regularity and complexity of periodic motions and chaos in nonlinear dynamical systems. Key features: Presents the mathematical theory of analytical solutions of periodic flows to chaos or quasieriodic flows in nonlinear dynamical systems Covers nonlinear dynamical systems and nonlinear vibration systems Presents accurate, analytical solutions of stable and unstable periodic flows for popular nonlinear systems Includes two complete sample systems Discusses time-delayed, nonlinear systems and time-delayed, nonlinear vibrational systems Includes real world examples Toward Analytical Chaos in Nonlinear Systems is a comprehensive reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Новинка

12271.69 руб.

Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization and perturbation analysis. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such a chaotic behavior may resemble a random behavior, it is absolutely deterministic. Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided. Key features: Considers engineering applications, design and control Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems Systematically discusses complex nonlinear phenomena in engineering nonlinear systems Presents extensively used nonlinear models in engineering Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Новинка

12676.73 руб.

Modern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics. This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter: – A large variety of theoretical approaches used in describing various media – Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.) – A description of the applications used in different branches of physics and many other fields of natural sciences – Describes the whole complexity of electrodynamics in matter including material at different levels. – Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field. – The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level – All examples and problems are described in detail in the text to help the reader learn how to solve problems – Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.
Новинка

8523.56 руб.

Clear, integrated coverage of all aspects of nonlinear optics—phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics—with contributions on applications from Robert Stegeman—this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model—to help readers make the leap from concepts to applications—Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.
Новинка

6376.27 руб.

Nonlinear Parameter Optimization Using R John C. Nash, Telfer School of Management, University of Ottawa, Canada A systematic and comprehensive treatment of optimization software using R In recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non–linear, multivariable conditions, more quickly than ever before. Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout. Nonlinear Parameter Optimization with R: Provides a comprehensive treatment of optimization techniques Examines optimization problems that arise in statistics and how to solve them using R Enables researchers and practitioners to solve parameter determination problems Presents traditional methods as well as recent developments in R Is supported by an accompanying website featuring R code, examples and datasets Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.
Новинка

10409.91 руб.

Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics, etc. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge. Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter. Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems. Considers the practical application of the theories and methods. Covers nonlinear dynamics, bifurcation analysis and numerical methods. Accompanied by a website hosting Matlab code. Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.
Новинка

11523.64 руб.

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Новинка

14334.79 руб.

The capability to predict the nonlinear response of beams, plates and shells when subjected to thermal and mechanical loads is of prime interest to structural analysis. In fact, many structures are subjected to high load levels that may result in nonlinear load-deflection relationships due to large deformations. One of the important problems deserving special attention is the study of their nonlinear response to large deflection, postbuckling and nonlinear vibration. A two-step perturbation method is firstly proposed by Shen and Zhang (1988) for postbuckling analysis of isotropic plates. This approach gives parametrical analytical expressions of the variables in the postbuckling range and has been generalized to other plate postbuckling situations. This approach is then successfully used in solving many nonlinear bending, postbuckling, and nonlinear vibration problems of composite laminated plates and shells, in particular for some difficult tasks, for example, shear deformable plates with four free edges resting on elastic foundations, contact postbuckling of laminated plates and shells, nonlinear vibration of anisotropic cylindrical shells. This approach may be found its more extensive applications in nonlinear analysis of nano-scale structures. Concentrates on three types of nonlinear analyses: vibration, bending and postbuckling Presents not only the theoretical aspect of the techniques, but also engineering applications of the method A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells is an original and unique technique devoted entirely to solve geometrically nonlinear problems of beams, plates and shells. It is ideal for academics, researchers and postgraduates in mechanical engineering, civil engineering and aeronautical engineering.
Новинка

4749 руб.

When a conducting fluid moves in a magnetic field, electrical fields are induced in the fluid which in turn result in the flow of electric currents. The interaction of the currents with the magnetic fields results in forces which effect the fluid flow pattern and modifications in the magnetic field distributions. The study of this complicated interaction of moving conducting fluid with the magnetic field is the science of MHD which is described by the electromagnetic field equations of Maxwell along with the equations of the fluid dynamics.
Новинка

12354.84 руб.

Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems. The text is divided into four parts: Part I: Basic Electromagnetic Theory includes Maxwell's equations, quasistatics, power and energy, stress and momentum, and electromagnetic wave theorems and principles Part II: Four-Dimensional Electromagnetism includes four-dimensional vectors and tensors and energy-momentum tensors Part III: Electromagnetic Examples includes statics and quasistatics, accelerating charges, plane waves, transmission lines, waveguides, antennas and diffraction, and ferrites Part IV: Backmatter includes a summary, appendices, and references Designed to accommodate a broad range of interests and backgrounds, the text's companion DVD enables readers to reconfigure the material as an introductory-, intermediate-, or advanced-level text. Moreover, the text and its DVD offer a broad range of features that make it possible for readers to quickly grasp new concepts and apply them in practice: Practice problems provide the opportunity to solve real-world problems using electromagnetic theory Forty animations illustrate electric and magnetic field transients Line drawings and computer-generated mathematical figures clarify complex concepts and procedures. Maxima, a powerful symbolic mathematics program, helps readers explore four-dimensional electromagnetic theory as well as perform numerical and graphical analyses Adaptable to multiple levels, this text can be used for both undergraduate and graduate coursework. It is also recommended as a reference for researchers in such fields as electrical engineering, laser physics, materials science, and biomedical engineering.
Новинка

8153.41 руб.

Modelling of Engineering Materials presents the background that is necessary to understand the mathematical models that govern the mechanical response of engineering materials. The book provides the basics of continuum mechanics and helps the reader to use them to understand the development of nonlinear material response of solids and fluids used in engineering applications. A brief review of simplistic and linear models used to characterize the mechanical response of materials is presented. This is followed by a description of models that characterize the nonlinear response of solids and fluids from first principles. Emphasis is given to popular models that characterize the nonlinear response of materials. The book also presents case studies of materials, where a comprehensive discussion of material characterization, experimental techniques and constitutive model development, is presented. Common principles that govern material response of both solids and fluids within a unified framework are outlined. Mechanical response in the presence of non-mechanical fields such as thermal and electrical fields applied to special materials such as shape memory materials and piezoelectric materials is also explained within the same framework.
Новинка

5302 руб.

Книга "Eigenfunction Branches of Nonlinear Operators, and their Bifurcations".
Новинка

7352 руб.

Книга "Numerical Solution of Nonlinear Equations. Proceedings, Bremen, 1980".
Новинка

4358 руб.

This volume contains some researches regarding to the Electromagnetic Compatibility domain (EMC), with applications in navigation, including problems concerning the simulation of disturbing electromagnetic interferences between electric and electronic equipment. Furthermore, the effects of the electromagnetic field on human body are analyzed. The main themes approached are: calculation of the feedback electromagnetic field, electromagnetic interference in case of onboard naval ships computers’, simulation of the electromagnetic disturbances against an electronic circuit, a simulation model of the electric discharges and their effects on the human body, a simulation model to produce a high energy electromagnetic pulse by a Flux Compression Generator (FCG), a physical electric model of the human body exposed to the action of the electromagnetic environment and, finally, some issues regarding the EMC shielding.
Новинка

3464 руб.

Behind all chronic diseases there is a myriad of causes that keep the disease alive. Simply suppressing the symptoms with medications will not help to eliminate the underlying causes. This book discusses many of the “hidden” causes that are often overlooked in chronic disease and what you can do about them using Natural healing protocols. Topics such as toxins, nutritional deficiencies, electromagnetic fields, digestive disorders, tooth foci and psychoemotional and Spiritual causes are discussed. There are chapters on the Holistic Model of Health, finding the causes of your disease, effect of toxins, heavy metals, parasites, Candida, food intolerances, electromagnetic fields, geopathic stress, tooth foci and natural treatment protocols to help with all these.
Новинка

3329 руб.

The present monography is dedicated to a fashionable trend in nonlinear analysis - the theories of blow-up of solutions for final time. In this book nonlinear Sobolev type equations are systematically studied. The book will be interesting both to experts in the field of nonlinear analysis and to students and post-graduate students of the corresponding specialties.
Новинка

5252 руб.

Книга "Local Theory of Nonlinear Analytic Ordinary Differential Equations".
Новинка

7777 руб.

Книга "Spectral Analysis of Nonlinear Operators".
Новинка

7702 руб.

Книга "Nonlinear Evolution Equations - Global Behavior of Solutions".
Новинка

3944 руб.

Strong chiral medium supports left handed circularly polarized and right handed circularly polarized waves with different wave numbers. Because of this decomposition of electromagnetic (EM) waves, novel properties and future applications have been visualized in optical, millimeter wave and microwave systems. In this treatise, three applications of strong chiral medium comprising guided wave structure, EM wave cavity and EM wave scatterer, are discussed at a wavelength much smaller than the dimensions of these structures.Hence the electromagnetic waves and fields in different structures containing strong chiral medium, discussed in this book, provide a basis for the use of strong chiral medium in electromagnetic wave propagation, radiation and scattering applications.
Новинка

13521.51 руб.

Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical models and mechanisms of the structure nonlinearity of micro-inhomogeneous media with cracks and cavities; Elastic waves in media with strong acoustic nonlinearity; Wave processes in micro-inhomogeneous media with hysteretic nonlinearity; Wave processes in nonlinear micro-inhomogeneous media with relaxation; Wave processes in the polycrystalline solids with dissipative and elastic nonlinearity caused by dislocations; Experimental studies of the nonlinear acoustic phenomena in polycrystalline rocks and metals; Experimental studies of nonlinear acoustic phenomena in granular media; and Nonlinear phenomena in seismic waves are dedicated to the theoretical and experimental research of nonlinear processes, caused by longitudinal elastic waves propagation and interaction in the micro-inhomogeneous media with a strong acoustical nonlinearity of different types (elastic, hysteretic, bimodular, elastic quadratic and non-elastic). This valuable monograph is intended for graduate students and researchers in applied physics, mechanical engineering, and applied mathematics, as well as those working in a wide spectrum of disciplines in materials science.
Новинка

5039 руб.

Книга "The Diffusion of Power in Global Governance. International Political Economy meets Foucault".
Новинка

8139 руб.

Книга "Adoption and Diffusion of Fish Pond Aquaculture in Cameroon".
Новинка

6739 руб.

Doctoral Thesis / Dissertation from the year 2014 in the subject Engineering - Civil Engineering, grade: 9.5, , course: Advanced Analysis of Steel Frames, language: English, abstract: The dissertation presents three various advanced analysis approaches which can capture accurately and efficiently the ultimate strength and behavior of steel framed structures with nonlinear beam-to-column connections subjected to static and dynamic loadings. Three major sources of nonlinearity are simultaneously considered in the analyses: (1) material nonlinearity; (2) geometric nonlinearity; and (3) connection nonlinearity. Three types of nonlinear beam-column element formulation considering both geometric and material nonlinearities are coded into two nonlinear structural analysis programs. Three types of steel frames analyzed by the developed programs are: (1) rigid frames; (2) linear semi-rigid frames; and (3) nonlinear semi-rigid frames. Three types of analysis can be performed: (1) nonlinear inelastic static analysis; (2) nonlinear elastic and inelastic time-history analysis; and (3) free vibration analysis. Three main resources of damping are taken into account in the developed programs are: (1) hysteretic damping due to inelastic material; (2) structural viscous damping employing Rayleigh damping; (3) hysteretic damping due to nonlinear beam-to-column connections. To solve nonlinear static equilibrium equations, the Generalized Displacement Control method is adopted herein because of t...
Новинка

9065.85 руб.

Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational electrostatics in the presence of flowing space charge. Based on years of extensive lab tests pertaining to the physical performance of unipolar corona ion flows, the book covers the enlarging of conventional electrostatic applications, which allows for some emerging and uncharted interests to be explored. Filamentary Ion Flow: Examines the theoretical discussions for creating a model of computational electrostatics involved with flowing space charges Presents new theory and experimental data based on extensive testing Offers potential design applications utilizing the theory Helps scientists who are involved in electromagnetic and electrostatic studies understand and accurately calculate corona originated ion flow fields Filamentary Ion Flow: Theory and Experiments is ideal for electrical engineers and research scientists interested in high-voltage technology, computational electrostatics, and electromagnetic theory.
Новинка

3944 руб.

This book contains two applications of high-order accurate methods for solving Maxwell’s equations. The first is the time domain modeling of the electromagnetic wave propagation in photonic crystals to demonstrate the behavior and sensitivity of the frozen mode phenomenon in finite structures with anisotropic materials. Moreover, a PDE constrained nonlinear optimization technique is introduced to optimize the design of photonic crystals for the phenomenon. The second application is the development of thin layer approximations to compute the electromagnetic field with the thin layers of strong magnetic materials in multidimensional spaces without compromising efficiency and accuracy. Metal backed coatings and transmission layers with isotropic materials or with tangentially-oriented anisotropic materials are considered in one and two dimensions in the time domain.
Новинка

14651.58 руб.

This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics
Новинка

8202 руб.

Today's standard textbooks treat the theoretical structure of electric and magnetic fields, but their emphasis is on electromagnetic radiation and static-electric and magnetic fields. In this book, Eugene Parker provides advanced graduate students and researchers with a much-needed complement to existing texts, one that discusses the dynamic electromagnetism of the cosmos--that is, the vast magnetic fields that are carried bodily in the swirling ionized gases of stars and galaxies and throughout intergalactic space. Parker is arguably the world's leading authority on solar wind and the effects of magnetic fields in the heliosphere, and his originality of thought and distinctive approach to physics are very much in evidence here. Seeking to enrich discussions in standard texts and correct misconceptions about the dynamics of these large-scale fields, Parker engages readers in a series of "conversations" that are at times anecdotal and even entertaining without ever sacrificing theoretical rigor. The dynamics he describes represents the Maxwell stresses of the magnetic field working against the pressure and inertia of the bulk motion of ionized gases, characterized in terms of the magnetic field and gas velocity. Parker shows how this dynamic interaction cannot be fully expressed in terms of the electric current and electric field. Conversations on Electric and Magnetic Fields in the Cosmos goes back to basics to explain why classical hydrodynamics and magnetohy...
Новинка

12275.65 руб.

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Новинка

9652 руб.

The study investigates the boundary of market efficiency and the diffusion mechanism in capital markets. A stylized information diffusion model is presented to describe the process by which investors gradually assimilate the information following an information event. The model suggests that a diffusion process depends on both a drift and a diffusion force. If prices have converged before the drift force disappears, the diffusion phenomenon is difficult to observe. Otherwise, the diffusion force dominates in the longer horizon and imposes a boundary on market efficiency. The model indicates that the speed of information diffusion depends on information content, information conductivity, and information shock absorption capacity. Each signal has a different degree of information content, and each firm has a unique information conductivity. Consequently, the information on different firms diffuses across investors at different rates. Several implications from this diffusion model are tested with quarterly earnings announcement data. The findings are consistent with an information diffusion process at work in capital markets.
Новинка

11907.76 руб.

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Новинка

14750.41 руб.

This clear and self-contained review of the last four decades of research highlights in the hot field of nonlinear optical (NLO) crystals, particularly of borate-based ultraviolet and deep-ultraviolet NLO crystals, covers three major subjects: the structure-property relationship in borate crystals, the structural and optical characteristics of various promising borate crystals, and their fruitful applications in a wide range of scientific and technological fields. Edited by the discoverers and users of these optical borate crystals, this is a readily accessible reading for semiconductor, applied and solid state physicists, materials scientists, solid state chemists, manufacturers of optoelectronic devices, and those working in the optical industry.
Новинка

2215.41 руб.

This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.
Новинка

10217.48 руб.

This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.
Новинка

9141.65 руб.

This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended finite element method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation-density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today's software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners in industry.
Новинка

12671.64 руб.

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.
Новинка

9829.72 руб.

Enables readers to master and apply the operator-theoretic approach Control of nonlinear systems is a multidisciplinary field involving electrical engineering, computer science, and control engineering. Specifically, this book addresses uncertain nonlinearity. Beginning with how real plants are modeled as operator-based plants, the author develops a systematic methodology that enables readers to understand a quantitative stability result, a critical factor in any nonlinear control system's stability and performance. Operator-Based Nonlinear Control Systems: Design and Applications focuses on the operator-theoretic approach, offering detailed examples on how to apply it to network controlled systems. In addition to current research results, the author explores future research directions and applications of the operator-theoretic approach. The book begins with an introduction that defines nonlinear systems. Next, it covers: Robust right coprime factorization for nonlinear plants with uncertainties Robust stability of operator-based nonlinear control systems Tracking issues and fault detection issues in nonlinear control systems Operator-based nonlinear control systems with smart actuators Nonlinear feedback control for large-scale systems using a distributed control system device Throughout the book, discussions of actual applications help readers understand how the operator-theoretic approach works in practice. Operator-Based Nonlinear Control Systems is recommended for students and professionals in control theory engineering and applied mathematics. Working with this expertly written and organized book, they will learn how to obtain robust right coprime factorization for modeled plants. Moreover, they will discover state-of-the-technology research results on robust stability conditions as well as the latest system output tracking and fault detection issues that are challenging today's researchers.
Новинка

10294.74 руб.

Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC converters due to wide applications of various electronic devices in industry and daily life, and the question of how to reduce the annoying, harmful EMI has attracted much research interest. This book focuses on the analysis and application of chaos to reduce harmful EMI of DC-DC converters. After a review of the fundamentals of chaos behaviors of DC-DC converters, the authors present some recent findings such as Symbolic Entropy, Complexity and Chaos Point Process, to analyze the characters of chaotic DC-DC converters. Using these methods, the statistic characters of chaotic DC-DC converters are extracted and the foundations for the following researches of chaotic EMI suppression are reinforced. The focus then transfers to estimating the power spectral density of chaotic PWM converters behind an introduction of basic principles of spectrum analysis and chaotic PWM technique. Invariant Density, and Prony and Wavelet analysis methods are suggested for estimating the power spectral density of chaotic PWM converters. Finally, some design-oriented applications provide a good example of applying chaos theory in engineering practice, and illustrate the effectiveness on suppressing EMI of the proposed chaotic PWM. Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design Approaches the subject in a systematic manner from analyzing method, chaotic phenomenon and EMI characteristics, analytical methods for chaos, and applying chaos to reduce EMI (electromagnetic interference) Highlights advanced research work in the fields of statistic characters of nonlinear behaviors and chaotic PWM technology to suppress EMI of switching converters Bridges the gap between numerical theory and real-world applications, enabling power electronics designers to both analyze the effects of chaos and leverage these effects to reduce EMI
Новинка

5714 руб.

Книга "Nonlinear Problems in the Physical Sciences and Biology. Proceedings of a Battelle Summer Institute, Seattle, July 3 - 28, 1972".
Новинка

8102 руб.

Книга "Growth and Form of Self-organized Branched Crystal Pattern in Nonlinear Chemical System".
Новинка

8677 руб.

Technology diffusion plays an important role in shaping China's growth patterns and strategies. Continuous and sustainable development of the Chinese economy depends heavily on taking advantage of technology diffusion induced by international trade and foreign investment. This book examines how technology diffusion facilitated by openness to foreign trade and foreign investment affects the evolution of China's regional growth and interregional inequality. The book aims to provide the reader with analyses, findings and insights that shed new light on related issues and problems regarding China's growth and development.
Новинка

9239.73 руб.

A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Новинка

2850 руб.

In the scenario, nonlinear optics is very important due the large number of applications such as optical limiting,image processing and nonlinear devices etc. There are considerable research efforts to study the mechanisms of optical power limiting, synthesize new materials and develop devices with advanced properties. An optical limiter is a device that strongly attenuates optical beam to a threshold level at high intensity while exhibits linear transmittance at low intensity. Such devices are used for protecting human eyes and optical sensors from damage due to exposure to intense radiation. The search for efficient optical limiters has lead to the study of various materials. This book is dealing with the problem of new materials and characterize them using Z-scan technique, it will be very helpful for the researchers and students who are working in the area of Nonlinear Optics.
Новинка

13938.8 руб.

Scientific and technical knowledge for measurements in modern electromagnetism must be vast as our electromagnetic environment covers all frequencies and wavelengths. These measurements must be applied to fields as varied as nanotechnologies, telecommunications, meteorology, geolocalization, radioastronomy, health, biology, etc. In order to cover the multiple facets of the topic, this book sweeps the entire electromagnetic spectrum, from several hertz to terahertz; considers distances ranging from nanometers to light-years in optics; before extending towards the various measurement techniques using electromagnetic waves for various applications. This book describes these different facets in eleven chapters, each covering different domains of applications.
Новинка

13463.61 руб.

The Duffing Equation: Nonlinear Oscillators and their Behaviour brings together the results of a wealth of disseminated research literature on the Duffing equation, a key engineering model with a vast number of applications in science and engineering, summarizing the findings of this research. Each chapter is written by an expert contributor in the field of nonlinear dynamics and addresses a different form of the equation, relating it to various oscillatory problems and clearly linking the problem with the mathematics that describe it. The editors and the contributors explain the mathematical techniques required to study nonlinear dynamics, helping the reader with little mathematical background to understand the text. The Duffing Equation provides a reference text for postgraduate and students and researchers of mechanical engineering and vibration / nonlinear dynamics as well as a useful tool for practising mechanical engineers. Includes a chapter devoted to historical background on Georg Duffing and the equation that was named after him. Includes a chapter solely devoted to practical examples of systems whose dynamic behaviour is described by the Duffing equation. Contains a comprehensive treatment of the various forms of the Duffing equation. Uses experimental, analytical and numerical methods as well as concepts of nonlinear dynamics to treat the physical systems in a unified way.
Новинка

3214 руб.

With ubiquitous electropollution from cell phones/towers, powerlines, computers, and wireless devices, this eye-opening book is the best resource for parents, community planners, healthcare professionals, and scientists alike. Winner, 1996 Award of Excellence from the American Medical Writers Association. From the earth's natural electromagnetic background to "Green" EMF safety designs, Electromagnetic Fields explains which illnesses are associated with artificial radiation, how technology impacts human health and wildlife, and how to live more safely."If you're looking for the plain unvarnished truth and the best available advice, this is one book you should not miss."-Robert O. Becker, M.D., author of Cross Currents and coauthor of The Body Electric"Other authors have dealt with EMF questions, but none with the clarity and evenhandedness of B. Blake Levitt. This book avoids the extremes of over-dramatization and understatement and delivers the important information in a cool and lively manner."-Andrew A. Marino, Ph.D., J.D., coauthor of Electromagnetism and Life, and The Electric Wilderness
Новинка

6342 руб.

White matter parcellation from Diffusion Magnetic Resonance Images reveals detailed 3D white matter structure and connectivity of the brain in vivo and thus is a viable tool for investigating neural differences. Measurements derived from these neural tracts or fascicles from Diffusion Tensor Images (DTI) exhibit potential as biomarkers for neurologic and neuropsychiatric disorders. - - - - - - - - - - - - - - - - - - - - We develop and implement a parcellation method that aims for lower sensitivity to initialization and local orientation error by directly segmenting full white matter tracts, rather than reconstructing individual curves, from diffusion tensor fields. A fast, robust volumetric and intrinsically normalized solution is achieved by efficient sampling and noise-filtering using a generic parametrized tract model. Interactive tract modification schemes are also developed to resolve ambiguity in branching tracts or to perform regional investigation for long fascicles. The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Lévy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance. Contents 1. Diffusion Phenomena and Models. 2. Probabilistic Models of Diffusion Processes. 3. Solving Partial Differential Equations of Second Order. 4. Problems in Finance. 5. Basic PDE in Finance. 6. Exotic and American Options Pricing Theory. 7. Hitting Times for Diffusion Processes and Stochastic Models in Insurance. 8. Numerical Methods. 9. Advanced Topics in Engineering: Nonlinear Models. 10. Lévy Processes. 11. Advanced Topics in Insurance: Copula Models and VaR Techniques. 12. Advanced Topics in Finance: Semi-Markov Models. 13. Monte Carlo Semi-Markov Simulation Methods. About the Authors Jacques Janssen is now Honorary Professor at the Solvay Business School (ULB) in Brussels, Belgium, having previously taught at EURIA (Euro-Institut d’Actuariat, University of West Brittany, Brest, France) and Télécom-Bretagne (Brest, France) as well as being a director of Jacan Insurance and Finance Services, a consultancy and training company. Oronzio Manca is Professor of thermal sciences at Seconda Università degli Studi di Napoli in Italy. He is currently Associate Editor of ASME Journal of Heat Transfer and Journal of Porous Media and a member of the editorial advisory boards for The Open Thermodynamics Journal, Advances in Mechanical Engineering, The Open Fuels & Energy Science Journal. Raimondo Manca is Professor of mathematical methods applied to economics, finance and actuarial science at University of Rome “La Sapienza” in Italy. He is associate editor for the journal Methodology and Computing in Applied Probability. His main research interests are multidimensional linear algebra, computational probability, application of stochastic processes to economics, finance and insurance and simulation models.